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SUMMARY

This project was concermned with the development of millimeter wave dielectric
waveguides and waveguide structures periodic dielectric variations. A chief technical
objective of this effort was toward the development of a novel highly integrated solid-
state high-power millimeter wave source which can be focussed to yield a coherent
narrow beam, capable of producing an effective scanning radiation pattern. When the
waveguide material is partly fabricated by an optoelectronic or photoactive material such
gallium arsenide, semiconductor surface emitting lasers may be used to induce a
controllable periodic charge carrier plasma within the surface of the waveguide.

Dielectric waveguides at millimeter wave frequencies are desirable because these
guiding structures have relatively small dimensions and systems can be easily integrated
on single wafer chips. The components have applications for: (1) grating surface emitting
antennas, (2) millimeter wave filters, (3) millimeter wave phase shifters and others.
Extensive development of theoretical and computer models of dielectric waveguides have
been accomplished. Experiments using both semiconductor (silicon) and insulator
(alumina) waveguide materials have been performed.

A key factor pertaining to periodic waveguides used as an antenna is the overall
length of the structure (aperture dimension). If the structure is long (too many grating
periods), most of the total input power may be extracted over a length much smaller than
the actual grating section. In addition, radiation at broadside (Second Bragg condition),
is minimized for very long gratings. For effective designs, careful tradeoffs between
grating length and grating strength need to be considered. In the experimental work some
of the early waveguides had relatively short grating sections, however, later we started
making much longer grating regions. (The resulting antenna dimensions were about two
inches.) The new waveguide structures were excellent in quality and exhibited classical
w-b dispersion characteristics around the second Bragg condition.

The ultimate goal of this project was to progress toward development of a high-
power scanning millimeter-wave antenna. High powers will be accomplished by locking
a large number of individual millimeter wave oscillators. (An alternative design is to
have a single master oscillator that feeds into a periodic configuration of pairs of an
amplifier and a grating.) Because of these potential designs we have experimentally
studied grating sections with input from both directions. An experimental configuration
used split the oscillator power for launching at both ends of the grated waveguide
structure. With the new arrangement, power was launched into the dielectric waveguide
from both the right and left directions. (This configuration corresponds to a situation
where the grating region would separate two oscillators to be locked into one coherent
system. The grating acts both as a feedback mechanism as well as the antenna.)
Depending on the relative phase of the two inputs, the far-field radiation pattern can be
maximized or minimized. The two-side incidence case shows that in the out of phase
condition, the radiation power is minimum at the second Bragg frequency.




In addition to the improvement of the design program of the periodic waveguides,
we performed simulation experiments of waveguide structures that have excited plasma
layers. These new periodic structures have a fixed grating waveguide coupled with a
separate confined plasma layer in the opposed waveguide surface. Typically the new
structures would be fabricated on wafers composed of either (1) silicon on sapphire (the
grating formed in the sapphire layer and the plasma layer excited in the silicon layer), or
(2) gallium arsenide on aluminum gallium arsenide ( the grating formed in the aluminum
gallium arsenide layer and the plasma layer excited in the galiium arsenide layer). In our
experiments, we started with an AI203 waveguide with a grating formed on one surface.
The waveguide was designed to radiate broadside. Next, a layer of metal foil was
attached to the waveguide on the side opposite the grating layer. (The metal foil was to
simulate an excited plasma layer with high electron/hole concentrations.) The radiation
pattern measured with the foil attached produced a beam at about 309 to the broadside
direction. This implies that a corresponding silicon on sapphire structure would
electronically scan about 309°.
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BRIEF OUTLINE OF RESEARCH FINDINGS

The work over the first six months on this program has
been concentrated on the development of the theory of
gratings on dielectric waveguides. There are several
theoretical approaches that can be used for the analysis of
gratings; the most common approach is to apply a perturbation
method such as the coupled-mode theory. However, these
approximate methods are inaccurate for gratings fabricated
with films of thin metals or plasma induced gratings.
Therefore, our grating studies employ the Boundary Element
Method which can be applied to most waveguide structures of
interest.

In the next phase of the program we will make
measurements of dielectric strucutures in the vicinity of 94
GHz. Consequently, we have prepared simple dielectric
waveguides using alumina (Al203)which has an approximate
relative dielectric constant of 10. Four waveguides with
slightly different grating periods have been fabricated with
a typical guide shown in the figure below. (The cross-
section of the waveguide and a standard scale were
photographed using an optical microscope.) The gratings were
cut in the alumina using a diamond saw. The overall length
of the waveguide is approximately 30 periods. Simple
waveguide calculations indicate the millimeter wavelength
along the guided structure is approximately 1 mm at 94 GHz so
that the grating period of 1 mm produces causes resonance at
the 2nd Bragg condition.

Fig. 1 A dielectric waveguide of Al203. The grating was
fabricated using a diamond saw.
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BRIEF OUTLINE OF RESEARCH FFINDINGS

The work over the last six months has been divided between theoretical and
experimental studies of periodic waveguides. We are developing theory to esti-
mate the transmission and reflection characteristics (Scattering paramecters) of a
dielectric waveguide with periodic teeth cutl in the dielectric. Our laboratory has
cut approximately 15 dielectric guides fabricated with Al,O5 as discussed in the
previous progress report.

Experimental measurements in the 90-100 GHz range is proceeding at an
excellent pace. Iixperimental and theoretical results are in also excellent agree-
ment. There are a large number of publications that indicate that 2nd order
Bragg reflectors do not radiate at the second Bragg frequency. However, we have
shown theoretically and experimental radiation (Broadside) from finite length
grating structures.

In the next period we will continue our measurements of the radiation fields
from the grating surface emitters (GSE) fabricated with Al,O,. In addition we
will start fabrication of silicon on sapphire dielectric structures. The Si on sap-
phire dielectric waveguides can be controlled by optical signals.
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BRIEF OUTLINE OF RESEARCH FINDINGS

The work of the last six months has been in both
theoretical and experimental studies.

QOur experimental work has been concerned with the
fabrication of dielectric waveguides in Al203. Since we are
performing experimental measurements at about 100 GHz, most
of the wavegquide structures have been fabricated with Al203
plates that are 40 mils thick. (The waveguide cross sections
are 40 mils x 2 mm. These structures support the dominant TE
or TM modes depending upon the polarization of the exciting
wave that is fed to the dielectric structure.) To date we
have made about 20 different waveguide structures that have
2nd order Bragg resonances in the range of B85 to 105 GHz.
Since these structures are tedious to make, it usually takes
about 3 days of laboratory work. The basic aim in the
fabrication of the different structures is to understand the
necessary grating geometries that will produce weak or strong
gratings. A strong grating will outcouple a major portion of
the electromagnetic power that enters the grating after about
20-30 periods while a weak grating ouvtcouples the light after
more than 100 periods. 1In general, the grating period is
dependent upon several parameters including the height of the
teeth in the waveguide. However, we have found that most of
the structures have grating periods of about 1.1 mm at 100
GHz, so that a grating with 24 periods is about 2.6 cm in
length. We have also found that for structures with teeth
height greater than about 15 mils that most of the power
entering the grating section is outcoupled after about 24
periods. Consequently, the radiating apertures are about 2
cm wide. On some structures we have fabricated two regions
with different grating periods; one grating is strong and the
other is weak. We have made these structures in order to
study the effects of reflection and transmission of strong
grating sections. The strong grating is designed at a
particular frequency to radiate broadside (2nd Bragg
Condition). The weak grating is designed for the 2nd Bragg
at a different frequency.

On all the dielectric waveguides with designed gratings
we measured the the radiation pattern at several different
frequencies (about the 2nd Bragg fregquency). On some
structures we excite the grating with equal amounts of power
at both ends of the waveguide. By adjusting the phase of the
wave at either end of the waveguide, the radiation field can
be maximized or nulled at the 2nd Bragg frequency. This
study is important when we eventually start to couple several
oscillators via the grating region. One long range goal is
to couple many sources using the gratings for outcoupling as
well as feedback to the various oscillators.

Theoretical work is proceeding. The boundary element
approach to solving for the characteristics of periodic
structures is being fully developed. This approach is best
for structures of arbitrary-shaped teeth. It is by nature a
non-perturbative approach.

10



SPIE Abstract January 1991, Los Angeles

Experimental Verification of Grating
Theory for Surface Emitting Structures®

R. G. N. Ayekavadi, C. S. Yeh and J. K. Butler
214- 692 3113 (<2 214-692-4099 (fax)
Department of Electrical Engineering
Southern Methodist University
Dallas, TX 75275

G.E. Evans
David Sarnoff Research Center
Princeton, NJ 08543-5300

Surface emitting structures are modelled using a rigorous Floquet-Bloch
analysis of periodic structures. The theory evaluates phase constants, attenuation
coefficients, reflection, transmission and outcoupling of power from a single grating
section. In the fabrication of dielectric grating structures, the waveguide and grating
dimensions were computed using approximate methods that employ the average
dielectric constant of the corrugated region. The grating structures were designed
so that only the n=-1 spatial harmonic radiates (2nd order Bragg grating). The far-
field patterns of the experimental structures were compared with the theoretical
results obtained using the rigorous Floquet-Bloch analysis. The refiection,
transmission and outcoupling of power from a single grating section are also obtained
from experiment and theory . Experimental verification of the model is achieved
using millimeter waves of 100 GHz in dielectric waveguides fabricated from Al203.

*Supported in part by the U. S. Army Research Office.
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BRIEF OUTLINE OF RESEARCH FINDINGS

Briefly, the work over the last period has progressed
along both theoretical and experimental development of
dielectric surface emitting structures.

Experimental work over the past period has been
concerned with the design and fabrication of periodic
waveguides fabricated with Al;03. The waveguides were
designed for first order Bragg radiation in the frequency
range from 90 to 100 GHz. A number of waveguides have been
designed and constructed including some with multipie
sections of corrugations on them. The radiation pattern from
these waveguides were measured by electronic scanning of the
frequency. The experimental pattern was compared with that
obtained from a simulation based on the Huygen-Fresnel
radiation theory (for the -1 order Floquet-Bloch wave). By
frequency scanning the local millimeter wave sources, the
far-field pattern scanned relative to the normal of the
waveguide. For most of the waveguide structures, the far-
field beam or major lobe scanned from 1.8 to 2.0 degrees per
GHz. Thus, the beam could be frequency scanned about 20
degrees over a 10 GHz range or about 10 percent of the
operating frequency.

Experimental studies were also carried on a two section
grating structure, illustrated below. Each grating section
was about 25 teeth long or about 30 mm. The separation
between the grating ends was about 20 to 25 mm. Each of the
grating was designed to radiate broadside at different
frequencies. For example one was designed to radiate at
about 98 GHz while the other at 102 GHz. The two section
waveguide was then excited with a 100 GHz source. The power
was split so that the double grating section was excited with
equal amounts of power from both directions. The
experimental and theoretical radiation patterns had very
close agreement. When the field at the input of each grating
had identical phase, the far-field pattern produced a single
broadside lobe.

glé

3dB Coupler

13
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BRIEF OUTLINE OF RESEARCH FINDINGS

Experimental work over the past period continued with
design and fabrication of periodic waveguides fabricated with

Al203. Some of the early waveguides made during the program
had relatively short grating sections, however, lately we
have started making much longer grating regions. Our new

waveguide structures seem to be excellent in quality and tend
to exhibit classical w-P dispersion characteristics around
the second Bragg condition. The modal attenuation
coefficient a also has the classically sharp null conditicn
at the second Bragg frequency. The experimental plots are
shown below.

To perform necessary characterization of the structures,
the far-field radiation patterns were also measured. In our
previous report we discussed the experimental configuraticn
that split the oscillator power that feeds the grated
waveguide structure. With the new arrangement, power is
launched into the dielectric waveguide from both the right
and left directions. (This configuration corresponds to a
situation where the grating regicon would separate two
oscillators to be locked into one cocherent system. The
grating acts both as a feedback mechanism as well as the
antenna.) Depending on the relative phase of the two inputs,
the far-field radiation pattern can be maximized or
minimized. The two-side incidence case shows that in the out
of phase condition, the radiation power is minimum at the
second Bragg frequency.

B

1

3
L AWM um 237 i 4 L3 LW s 48 L i id 0 3 K3 i3t 130 3 am i3 tm :re
[ Y

Fiqure 3: Jonwmea rmation of the warnqyxie wi. TR 1 \lepumimen roAKAAL revms b, L




25339-EL

PROGRESS REPORT
TWENTY COPIES REQUIRED

ARO PROPOSAL NUMBER: 25339-EL
PERIOD COVERED BY REPORT: 1 July 1991 - 31 December 1991

TITLE OF PROPOSAL: Millimeter-Wave Appl of Semiconductor
Dielectric Waveguides with Plasma Layers
(Surface or Buried)gen fr semicond laser

CONTRACT OR GRANT NUMBER: DAAL03-89-K-0029

NAME OF INSTITUTION: Southern Methodist University

AUTHORS OF REPORT: Jerome K. Butler

LIST OF MANUSCRIPTS SUBMITTED OR PUBLISHED UNDER ARO SPONSORSHIP
DURING THIS REPORTING PERIOD, INCLUDING JOURNAL REFERENCES:

J. K. Butler, W. E. Ferguson, G. A. Evans, P. Stabile and A. Rosen, "A boundary element
technique applied to the analysis of waveguides with periodic surface corrugations,”
IEEE J. Quantum Electronics, Submitted for publications. (Review attached).

C. S. Yeh, N. Urimindi, J. K. Butler, G. A. Evans, P. J. Stabile, and A. Rosen,
"Experimental and theoretical investigation of periodic corrugated dielectric
waveguides,” OE Lase '92, 19-25 January 1992, Los Angeles, CA. (Invited Paper to be
presented.)

SCIENTIFIC PERSONNEL SUPPORTED BY THIS PROJECT AND DEGREES AWARDED
DURING THIS REPORTING PERIOD:

J. K. Butler J. Liu
R. Ayekavadi N. Urimindi’
C.S. Yeh

REPORT OF INVENTIONS (BY TITLE ONLY):

Jerome K. Butler

Department of Electrical Engineering
Southern Methodist University
Dallas, TX 75222

16




BRIEF OUTLINE OF RESEARCH FINDINGS

Experimental and theoretical progress over the past
period has progressed at an excellent rate. We are extremely
happy with the correlation of theoretical calculations with
experimental measurements of the periodic waveguides
fabricated on the Al703 material.

In addition to the improvement of the design program of
the periodic waveguides, we have performed simulation
experiments of waveguide structures that have excited plasma
layers. These new periodic structures have a fixed grating
waveguide coupled with a separate confined plasma layer in
the opposed waveguide surface. Typically the new structures
would be fabricated on wafers composed of either (1) silicon
on sapphire (the grating formed in the sapphire layer and the
plasma layer excited in the silicon layer), or (2) gallium
arsenide on aluminum gallium arsenide ( the grating formed in
the aluminum gallium arsenide layer and the plasma layer
excited in the gallium arsenide layer). In our experiments,
we started with an Alz03 ywaveguide with a grating formed on

one surface. The waveguide was designed to radiate
broadside. ©Next, a layer of metal foil was attached to the

waveguide on the side opposite the grating layer. (The metal
foil was to simulate an excited plasma layer with high
electron/hole concentrations.) The radiation pattern

measured with the foil attached produced a beam at about 30°
to the broadside direction. This implies that a
corresponding silicon on sapphire structure would

. o)
electronically scan about 307.

Review of submitted paper:

Dear Dr. walpole

Here is the review of the manuscript by Butler et. al. which was
passed to me by Paul Jessop.

Report on "A Boundary Element ...."

This paper is excellently written and represents an important
contribution to the analysis of integrated gratings. The paper

also'has considerable pedagogical v3lue and should therefore be
published as is.
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A Boundary Element Technique Applied
to the Analysis of Waveguides with
~ Periodic Surface Corrugations *

J. K. Butler and W. E. Ferguson
Southern Methodist University
Dallas, TX 75275
G. A. Evans, P. Stabile, and A. Rosen
David Sarnoff Research Center
Princeton, NJ 08543-5300

August 23, 1991

Abstract

Boundary integral formulation is used to characterize Floquet-
Bloch modes of two-dimensional multilayered periodic waveguides. A
new technique is described for matching fields inside the grating to
those external to the grating region. Although a simple four layer
structure is used to illustrate the method an extension to multilayer
waveguide structures is straight forward. The mathematical formal-
ism has been simplified, allowing for more efficient computations using
fast Fourier transform algorithms.

*Supported in part by the Army Research Office and the Department of the Air Force.
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THEORITICAL AND EXPERIMENTAL INVESTIGATION
OF PERIODIC CORRUGATED DIELECTRIC WAVEGUIDES*

C. S. Yeh, N. Urimindi and J. K. Butler

Department of Electrical Engineerin
Southern Methodist University, Dallas, TX 75275

P. Stabile and A. Rosen
David Sarnoff Research Center, Princeton, NJ 08543-5300
ABSTRACT

In ;his experimental study we investigate the guided mode-radiation mode coupling of
periodic dielectric waveguides. The dispersion relation and the attenuation constant along the
dielectric waveguide were measured around the second Bragg frequency. The far field radiation
pattern was also measured. Floquet theorem was applied to solve wave equations. Zero order
approximation was used in the design of waveguides. For surface emitting structures used in
surface emitting lasers and couplers, the most important parameter is the dispersion relation
and attenuation constant along the corrugated waveguide around the second Bragg frequency.
The dispersion and attenuation measurement shows that the attenuation constant minimum
occurs at the second Bragg frequency. This corresponds to the maximum Q point of the corru-
gated waveguide. Two side incidence shows that in the out of phase condition the radiation
power is minimum at the second Bragg frequency and have two lobes.

* Supported in part by the Army Research Office.
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A Numerical Investigation of Wave Interactions in
Dielectric Waveguides with Periodic Surface
Corrugations

G. HADJICOSTAS, JEROME K. BUTLER, FeLLow, IEEE, GARY A. EVANS, SENIOR MEMBER, IEEE,
NILS W. CARLSON, MEMBER, IEEE, AND ROBERT AMANTEA, SENIOR MEMBER, 1EEE

Abstract—The modal properties of planar multilayered waveguides
with a rectangular surface corrugation are investigated. A rigorous
full Floquet numerical analysis is performed for the fundamental TE
mode of the Infinite periodic structure. The algorithm is based on a
boundary element solution of the integral wave equation in the grating
region. A generalized transverse resonance-type matrix equation is
sought that matches all continuity, periodicity, and boundary condi-
tions. The resonant solutions of this characteristic equation represent
all the surface and leaky waves supported by the structure. The exact
dispersion characteristics, as well as the amplitudes of the space har-
monics, are computed and discussed in connection to radiation losses
and coupling mechanisms near resonant Bragg conditions. In partic-
ular, a specific double-heterostructure GaAs-AlGaAs waveguide ge-
ometry has been examined in detail. Under appropriate boundary con-
ditions, an estimate of the power reflection coefficient is computed for
a finite length distributed Bragg reflector.

I. INTRODUCTION

N this paper, we present a rigorous numerical analysis

of mode propagation in periodic optical waveguides
with a rectangular surface corrugation. This class of open
thin-film structures has attracted considerable interest be-
cause of their important applications in distributed Bragg
reflector (DBR) and distributed feedback (DFB) lasers,
beam steering devices, and as output and input couplers.

The analysis of wave propagation in transversely
bounded open periodic waveguides becomes complicated
by the possible presence of radiated waves. The problem
has been analyzed in the past by numerous methods and
under a wide variety of possible assumptions. The cou-
pled wave formulation [1]-[9] and the modal approach
[10]-{16] are among the most commonly used techniques.
In their complete form, both techniques can produce exact
results. They constitute merely aliernate representations
of the electromagnetic field inside the grating: one in terms
of phase matched, oppositely traveling waves with slowly
varying amplitudes, and the other in terms of waves with

Manuscript received October 5, 1989; revised October 10, 1989, This
work was supported in part by the U.S. Army Rescarch Office and the U.S.
Depanment of the Air Force.

G. Hadjicostas and J. K. Butler are with the School of Enginecring and
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G. A. Evans, N. W. Carlson, and R. Amantea are with the David Sar-
noif Research Center, Princcton, NJ 08543,

IEEE Log Number 9034735,

an infinite number of space harmonics (Floquet-Bloch
waves) with amplitudes which are inherently adjusted as
to satisfy the grating boundary conditions. It is the intro-
duction of various simplifying assumptions that reduces
the full and exact formulations to the approximate theo-
ries encountered in the literature.

Typical assumptions in the coupled wave formulation
(confusingly referred to as coupled mode approach) in-
clude: 1) retaining only one scattered wave in addition to
the fundamental (two-wave coupled wave theory), and 2)
neglecting second derivatives of the field amplitudes (first
order, two- or multiwave coupled wave theory). These
assumptions frequently yield simple analytical results;
however, they often require a priori knowledge of the
coupling phenomena and the physical mechanisms in-
volved.

On the other hand, the modal formulation (otherwise
known as the Floquet-Bloch approach) is inherently ac-
curate. Even though the wave amplitudes are obtained by
a multiple-step computational process, the formulation
does not require any a priori assumptions. Based on the
results obtained from the rigorous analysis, simplifica-
tions can be subsequently introduced that may discard
waves with negligible amplitudes (truncated two- or four-
wave modal theory).

Recent investigations of second-order gratings using the
coupled wave approach [17]-(18] describe the field in the
grating as a sum of two oppositely propagating waves
A(z), B(z) with slowly varying amplitudes and propa-
gation constants X and —K where K = 27 /A and A is the
grating period. The presence of radiation and other scat-
tered waves simply affects the coupling between the am-
plitudes A (z) and B(z) through the introduction of added
constants to the usual set of two-wave coupled wave equa-
tions. These constants have the form of overlap integrals
and represent the reactions of the various scattered waves
back to their generating or phase-matched oppositely trav-
eling waves. It is assumed that only the two fundamental
waves give rise to and have feedback from other scattered
waves. In addition, higher derivatives and other terms are
excluded from the coupled wave equations. The method
[17], [18] is essentially a perturbation-iteration technique
in which the initially assumed field distribution is modi-
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fied by the improved perturbation method suggested in
[19]). The resulting set of equations is thus solved in a
self-consistent manner that allows them to be used even
with thick corrugated gratings.

Peng et al. [14) used the modal formulation to numer-
ically solve the cases of holographic and rectangularly
corrugated multilayered films. As opposed to the pertur-
bation technique discussed above, here, the exact field
representations are assumed in each region and are sub-
sequently matched at the layer boundaries. In the uniform
regions surrounding the grating region, the field is ex-
pressed as an infinite summation of harmonics ¥, (x) exp
(~—va2) which may be regarded as modes with a simple
sinusoidal transverse variation, which propagate along z
with a propagation constant -y, (exp ( jwt) assumed). In-
side the grating region, the transverse variation of ¥, (x)
becomes considerably more complicated because of the
coupling between all of the space harmonics due to the
periodic variation in the dielectric constant in this region.
For every nth harmonic, the transverse propagation con-
stants and wave amplitudes describing v, (x) have to be
calculated beforehand by numerical solution of a trun-
cated matrix eigenvalue problem.

The computational method described in this paper re-
lies on the numerical solution of the integral wave equa-
tion inside the grating region. This formalism has distinct
advantages over the more traditional ones, especially
when the boundary conditions are imposed through a-col-
location (point-matching) technique. The unknown field
quantities together with all the boundary conditions of the
problem are explicitly incorporated in the defining equa-
tion. For the problem at hand, the boundary conditions on
the longitudinal interfaces of the grating layer are func-
tionally known because of the Floquet expansion of the
fields in the uniform layers above and below it. On the
other hand, the boundary conditions for the transverse in-
terface between the periodic unit cells are naturally pro-
vided by Floquet's theorem and continuity requirements.
Thus, the method can be applied in a rather straightfor-
ward way towards a rigorous solution of the periodic
problem, without any a priori assumptions and to a user-
specified accuracy. The boundary integral formulation is
a natural choice for this problem because we seek the field
solution only on the grating layer interfaces in order to set
up a transverse resonance-type characteristic equation for
the propagating mode.

In the following section, the determinantal equation for
the propagating waves is set up. A brief discussion de-
scribing the transformation of Maxwell's equation from
its usual differential form to an integral equation is pre-
sented. Some considerations regarding the selection of the
appropriate Green’s function and the handling of existing
singularities are pointed out. A boundary element method
(20]-[21] is subsequently applied to discretize the integral
equation; the resulting homogeneous matrix equation to-
gether with appropriate continuity and periodicity condi-
tions constitutes the secular (determinantal) equation for
the problem. Essentially, the procedure is the one-applied
by Matsumoto ef al. [15] for the solution of the metallic/
plasma stripe leaky wave antenna.
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In Section III, the results are described in terms of dis-
persion-attenuation (Brillouin) diagrams kg A — SA/aA.
Furthermore, the magnitudes of the most important space
harmonics are given. The spectral characteristics of the
radiating (fast harmonic) constituent of the propagating
wave are examined before and after the second Bragg res-
onant condition. In Section IV, based on the amplitude
findings of the previous section, an estimate of the power
reflection coefficient from a finite length second-order
DBR geometry is calculated. A selected four-wave (two
fundamental components and two associated space har-
monics} coupled wave formalism has been applied, based
on the fact that the amplitude of the ( —1) radiating com-
ponent decreases to negligible levels in the vicinity of the
second Bragg.

II. MATHEMATICAL FORMULATION

Consider the double-heterostructure GaAs-AlGaAs
waveguide geometry with a grating shown in Fig. 1. The
substrate (AlGaAs) and superstrate (air) regions are as-
sumed to be half spaces. The grating consists of the pe-
riodic juxtaposition of homogeneous rectangular Region
A (dielectric constant x3) and Region B (dielectric con-
stant ;). A time harmonic TE wave propagates in the
axial z direction as exp (jw! — vyg2), with the field inva-
riant with respect to y. The complex propagation constant
Yo = « + jB. Since the dielectric -materials of such a
structure are regionally homogeneous, the field in each
region satisfies the scalar Helmholtz equation

L b .
5;2-+5? V(x, z) + koe¥(x,2) =0 (1)
where for the TE case, ¥ = E|; k; is the free-space prop-
agation constant and « is the relative dielectric constant
of the region. In the uniform layers above and below the
grating, the field expressions have to appear in the Flo-
quet form in order to satisfy the boundary conditions on
the grating surface. In the ith layer, the solution becomes

¥(1) = Syal) e (-n2) ()
where
Y =& + jB, = a + j(B + nK);
e =1,0 1 0. (3)

(It should be noted that 3, is identical to 8.) The trans-
verse wave functions outside the grating are given by

A, eXp [hln(w2 = x)];
X > W

As, €0s (h3ax) + By, sin (hy,x);
“wy <x <0

Agn €08 (hgax) + By, sin (fgnx);

Va(x) = (4)

—w; — Wy <X < W

As, exp [hs, (w3 + wy + X))
- 6 | 23

X < —wy — Wy
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If the layver has finite thickness, there are two amplitude
coefhicients A4,, and B,,. On the other hand, in semi-infinite
lavers. we keep only the component whose field decays
exponentially away from the structure. provided the spa-
tial harmonic is proper. In addition, a relation between
the parial wave amplitudes ¢, in each uniform layer is
found by imposing continuity of the tangential field com-
ponents (£, dE, /dx) across the laver boundaries.

Inside the grating layer, recall that the coefficients v,
are all coupled together. We choose to avoid the laborious
exact solution for the field everywhere inside the grating
and we seek a relation between ¥ and its normal deriva-
tive only along the boundary enclosing the homogeneous
regions R, and Ry. Towards this goal, we convent (1) into
an integral equation. Results based on the numerical so-
lution of integral equations have the advantage of being
accurate even if the boundary conditions are only approx-
imately met. In panticular, for the problem at hand. the
field and fluxes will be assumed piecewise constant and a
collocation (point matching) technique will be used to
impose field continuity and periodicity.

According to [20]. through the use of Green’s second
identity. (1) becomes

+ (ki + ol =

\ | [Glx. 7. %) i (7) = ¥(FITIGx. . 7)) ds

[er. AL
L an

~I!

- \”;) on

v C

(6)
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AG(x. 7. F
9G(x 7. Fo) "’)]df.

LUB)

The left-hand side is a surface integral over the transverse
plane Region R: the right-hund side 1s a closed line inte-
gral over the boundary contour ¢ that encloses R. The
quantity d/dn denotes an outward normal derivauve. In
the above equation, if G is chosen to sausfy

ViG(x. 7. 7o) + kgkG(x. 7. 7o) = =6(|F = 7l)
(7)
then (6) reduces to
o
Y(F) = <§>r[c(x. 7 7) 2 a(n"’)

(8)

where 7 € R, excluding ¢ while 7 € c.

Solutions of (7) are Bessel functions. For a finite do-
main. any combination CyJ, — Y, can be used (note that
J, is a solution of (7) only when 7 # 7). The coefficient
of Y, is determined to be —1/4 from the singularity con-
dition at ¥ = 7y. For an infinite domain. €y must equal
—j/4 because only the second-order Hankel function
—jYHY = —ji(J, — jY,) satisfies the proper radiation
conditions (outward traveling waves. vanishing at infin-
ity). Analytically, the results should be independent of
C,, but since the computations are done numerically, a
slight effect on the convergence rate of the results has been
noticed. Since we found no consistent way of optimizing
the value of Cy, unless stated otherwise, the zeroth-order
second-kind Bessel function [28] shall be used through-
out. i.e.,

G(x. F. %) = —1Yo(koVk[F = %)) (9)
In the limit of 7 approaching the boundary, (7) becomes

(20]
l ) =
5‘1’(’) = ‘;

v

ovir
{G(x. 7. Fo) ———a[n"’)
aG(A r. Fn)
on
where 7, 7y € c and §, dl denotes the principal value line

integral with the contribution of the singularity already
accounted for.

(10)

- ¥ (%) dl

II1.

To obtain a numerical solution, the integral equation
(10) is discretized to a finite size matrix equation. The
relation between ¥ and ¥ /dn for each region is inde-
pendent of the other, and thus the equations are treated
separately. Following [20], we can write (10) as

BouNDARY ELEMENT METHOD

tu, = é:l q,G, — ,% ud, (11)
where
g, = g G(x.7,.7,)dl
aG(k. 7.7}
D, = SL an —dl
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and u, and g, are the field amplitude and flux, assumed
constant over the jth boundary segment.

Upon placing 3¢ = D + 39 where 9 is the unit matrix,
{11) becomes

Jrlar = Grgr (12)

which, for every region R( =R,, Rg), relates the value of
u at the midnode i, with the values of u and du/dn at
every other node j, including j = i.

All the line integrals along the elements ¢;; j # i can
be calculated numerically using a four-point quadrature
tule {27]). For the j = i case, the integration path ¢; = ¢,
contains the *‘source point’’ 7, = (x,, ;) and a logarith-
mic-type singularity is present. Even though this singu-
larity is analytically integrable, a logarithmic Gauss quad-
rature rule has been used again in order to maintain good
accuracy.

For each region, (12) represents a set of N homoge-
neous equations with 2 N unknown field and field deriva-
tives. The necessary extra equations needed are provided
by imposing continuity across the x = 0 and x = w; in-
terfaces, as well as continuity and periodicity conditions
across the Region A-Region B interface. After appropri-
ate substitution, we end up with a system of 2 N equations
in 2N unknowns; the coefficients of the 2N unknown
boundary fields and their normal derivatives form the
complex elements of the matrix § [15]. Such a homoge-
neous system of linear equations will have a nontrivial
sofution provided that the determinant of the matrix &
vanishes. Since the only unknown in & is -y, the resonant
solutions, if any, of the determinantal equation will give
the propagation constants for the structure modes:

Following the computation for v, all the unknown
fields and derivatives can be evaluated under a suitable
normalization condition. A complex root finder routine
based on Muller’s method has been used for the numerical
evaluation of the above secular equation. The Floquet
amplitudes for the field expansion in all the uniform re-
gions can subsequently be evaluated.

IV. NuMEericaL ResuLTs

Before proceeding to the numerical results, some fur-
ther discussion of (13) is necessary. The dispersion rela-
tion (13) depends on vy, explicitly and also through the
various transverse propagation constants h,. For the
waveguide geometry examined here, there exists only one
fast radiating harmonic (n = =1). Consider the semi-
infinite air region (x > wy). According to (5), the wave
propagation constant in the transverse x direction for this
harmonic will be (we have dropped the subscript that de-
notes layer 1)

Ry = — (ki + 41)) (14)

which is a double-valued function of 4 _,. This means that
there might exist different solutions corresponding to the
different branches of (14) chosen. A branch cut is intro-
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duced as in Fig. 2, which maps the 4>, plane onto the
right plane of hA_, that corresponds to *‘proper’’ spatial
hcrmonics or the left plane of A_, that corresponds to
**improper’’ waves. From (3),

R o= —(ki+a® - B) - 2aB,.  (15)

Unlike the first Bragg condition, the vicinity of the sec-
ond Bragg exhibits many interesting phenomena, as far as
the character of the modal solutions is concerned. If A has
a value such that 8y < X, then,

By =B~ K<O
thus,
Im(k,) >0
Re (h1,) < 0

which puts A2 in the second quadrant of the 4? plane (Fig.
2). The proper branch solution has A_, lying in the region
I,(h_, € 1,) of Fig. 2. Since the wave propagates in the
x direction as exp (—h_,x), this branch corresponds to
radiation outwards with an exponential decay at infinity.
The improper branch, however, would correspond to in-
coming radiation from infinity.

On the other hand, if the second Bragg condition is
crossed, from (15), we get

Im(h,) <0
Re (h2,) < O.

Thus, A2, is in the third quadrant in the A° plane, which
puts h_, either in the IV, or 1V, sector (Fig. 2). In this
case, it is the improper branch which has to be chosen for
outgoing radiation waves. It is clear that waves with
transverse propagation constants in the 1V, sector possess
a negative real part which results in nonspectral wave so-
lutions which grow exponentially with x.

Thus, during the crossing of the second Bragg condi-
tion, A2, is allowed to cross the branch cut and A _, con-
tinuously shifts from the proper wave plane to the im-
proper plane. It is noted that even though this is not the
only possibie choice, it is the only one that leads to a
solution «yg of (12).

The plots in this section pertain to the structure of Fig.
Twithe, =1,k = kg = 3.4%, k3 = 3.6%, wy = 0.2 um,
and wy; = 0.06 um. Fig. 3 shows the convergence of the
real part a and imaginary parn 8 of the fundamental prop-
agation constant vy as 2 function of the total number of
elements used to discretize the boundary around each re-
gion. The operation point has been chosen in the vicinity
of the second Bragg. The results have been computed
using the second-kind Bessel function Y, and the second-
kind Hankel function H4''. It is observed that because of
the numerical solution of the integral wave equation, the
choice of Green's function affects the computed results.
As the number of boundary elements increases, the result
converges to the same answer independently of the choice
of Green's function. This independence means that the
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numerical solution behaves as expected from the theoret-
ical analysis. and thus the discretized matrix equation is
properly modeling the wave equation in that region. All
subsequent results have been computed using 11 bound-
ary elements per side.

Fig. 4 shows the transverse mode profile at 2 = 0 as
calculated from the summation in (2). The summation has
been truncated to 22 space harmonics (from —11 to 10).
Since the radiating —1 harmonic has the least decay in
the transverse direction as compared to the others, it rep-
resents the major contributor to the field at distances far
away from the grating. Near the guiding layer, it is the
=2 and the 0 harmonic which are predominant.

The solution of (13) is presented in terms of dispersion
koA versus BA /7 and attenuation kgA versus oA dia-
grams. The axes have been multiplied by the period A in
the plots shown. In Fig. 5, the scan in A extends from
below the first Bragg condition to past the second. The
triangular slow-wave regions for the air (light hatching)
and the substrate (heavy hatching) are also shown for ease
of interpretation [26]. We observe that in this case. 8 ap-
pears to coincide with the unperturbed propagation con-
stant and runs along the boundary of the substrate tnan-
gle. Just after the intense surface-wave stopband of the
first Bragg. the wave starts to radiate in the substrate, and
the substrate beam scans towards its broad side. As soon
as BA crosses the air triangle intertace, another beam ap-
pears in the air space. The attenuation o remains almost
constant up to the second Bragg where it experiences a
sudden drop and a subsequent leaky-wave stopband be-
fore it goes back to normal.

Fig. 6 examines in extreme magnification the details of
the first Bragg stopband for two different grating toc h
heights. Inside the slow wave triangle. all harmonics rep-
resent bounded waves. Since there is no radiation and
since the dielectric materials have been assumed lossless,
o is zero except during the first Bragg interaction where
Yo becomes complex. The increased perturbation caused
by the thicker w, = 0.2 um grating results in a slight
increase in bandwidth of the stopband interaction. Fig. 7
is a plot of the dominant Floquet harmonics, normalized
with respect to the fundamental, in the vicinity of the first
Bragg stopband. In the BA = = region, the n = —1 and
n = 0 harmonics need to have exactly the same amplitude
in order to satisfy the boundary conditions on the grating
surface. The same pairing occurs between the n = -2
and n = 1, and so forth. In a true surface-wave stopband,
the pairing of all harmonics is complete, resulting in a
Poynting vector which is identically zero for every x.

In Fig. 8, a detailed magnification around the second
Bragg condition is shown. In contrast to the first Bragg.
the 3A = 2~ condition is satisfied only at a single point
rather than for a whole region. At this point, « exhibits a
sharp drop. It seems that a zero in the attenuation coeffi-
cient is the general behavior for transversely bounded pe-
riodic structures. The propagation constant 3 approaches
the Bragg condition with a zero slope and then rises again
in a manner representing a stopband. but with a slope pro-
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Fig. 6. Magnification of Fig. 5 around the first Bragg resonance for two
grating tooth heights.

portional to the amount of perturbation caused by the grat-
ing. During this transition, a experiences a resonant peak,
similar to that observed in the vicinity of the first Bragg
condition. Since in this region the —1 harmonic is an im-
proper leaky wave, the corresponding region is referred
to as a leaky-wave stopband, even though the resem-
blance is only superficial.
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Fig. 9 is a plot of the magnitude of the predominant
normalized Floquet harmonics in the guiding layer in the
vicinity of the second Bragg interaction. The parameters
for the configuration are those of Fig. 1 with w, = 0.1
pm. The n = —2 harmonic momentarily acquires the same
weight in the field representation as the fundamental, with
the radiating n = —1 harmonic dropping three orders of
magnitude. The power picture in the BA = 2« region is
radically different from the BA = = region of Fig. 6. Be-
cause of the imperfect pairing of the space harmonics (the
n = —1 does not take part in the coupling), the Poynting
vector does not vanish identically for every x. Near the
guiding layer, it is positive because of the contribution of
the fundamental harmonic; far from the grating, it be-
comes negative because of the predominance of the n =
—1 harmonic. The interaction does not result in the clas-
sic stopband encountered in the first Bragg case.

V. MobpaL RefFLECTIONS OF FINITE-LENGTH GRATING
STRUCTURES NEAR THE SECOND BRAGG CoONDITION

The interaction of the modes in a uniform waveguide
without periodic perturbations and the Floquet-Bloch
modes of a periodic waveguide will be discussed in this
section. The geometry of the periodic waveguide is shown
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in Fig. 1; the regular waveguide is identical to the peri-
odic structure, but has no corrugations. As an example,
the two waveguides are fabricated from a grown Al-
GaAs-GaAs wafer with a grating formed on a section of
the wafer. It is assumed that the grating is formed on the
wafer in the region —L /2 < = < L /2. An incident mode
¥, on the grating produces a reflection ¥, and transmis-
sion ¥, as illustrated in Fig. 10. In the periodic region,
the fields are described by the Floquet-Bloch formalism
as discussed above. Although a generalized analysis can
be developed, we will limit our discussion of the problem
to the immediate vicinity of the second Bragg region. This
restriction greatly simplifies the problem because the
modal structures in the periodic and the regular wave-
guides are similar. Further, the number of dominant spa-
tial harmonics is a minimum.

In the periodic region, the fundamental solution for a
mode propagating in the positive : direction is

¥ = exp (~v02) Z ¥u(x) exp (—jnkz). (16)

Because the dielectric constant is chosen such that x(x,
2) = x(x, —2), the backward mode solution is

¥ = exp (+703) X ¥,(x) exp (+jnKz).  (17)

It should be noted that the coefficients ",(x) appear in
both of the above equations because of 'he symmetry of
the dielectric constant. If this symmetry condition is not
satisfied, the expansion coefficients in (16) and (17) will
be different. The real parnt of v, is positive so that both
forward and backward waves will attenuate due to scat-
tering and radiation losses that occur near the second
Bragg condition. It should be noted that when the wave-
guide material is lossless, the dielectric constant «(x, )
= x*(x, 2). Two other Floquet-Bloch solutions are ¥ *°
and ¥ ~". These latter solutions represent modes that gain
power as they propagate; the power being absorbed is due
1o sources located at x = +oo,

With a grating region sandwiched (left and right) by the
regular waveguides, the fundamental mode in the regular
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Fig. 10. Waveguide configuration used for computauon of the reflection
coeflicient of a regular waveguide mode incident on a waveguide with a
grating of length L.

waveguide will be launched at ; = — o towards the grat-
ing. This produces the reflected and transmiued fields
which can be written as

¥, = Yy(x) exp (jbyz) exp ( —jKz) (18)
¥, = pyy(x) exp (~jdyz) exp (+jKz) (19)
¥, = 7yy(x) exp (jde2) exp (—jKz) (20)

where ¢ ;(x) is the transverse field solution in the regular
waveguide. 6y = K — By, By is the modal propagation
constant in the regular waveguide, p is the reflection coef-
ficient, and 7 is the field transmission coefficient.

In the grating, the field is taken as a linear combination
of the forward and backward wavesas ¥y =a¥ "~ + bV~
where the coefficients a and b are determined from the
boundary conditions at the input, and output planes of the
grating. Near the second Bragg frequency, the spatial har-
monics n = —2 and O play a major role in transfer of
power from the regular waveguide to the grating region
and vice versa. This efficient power transfer occurs be-
cause the transverse field components ¥ (x), Y _,(x), and
Vo (x) have almost identical shapes. Thus, in the vicinity
of the second Bragg resonance. the total grating field can
be simplified using the dominant terms as

Yr(x, 2) = [avp(x)e™ + by _a(x)e ]e™k
+ [byo(x)e™™ + ay_(x)e™]e (21)

where P = —a + jdand 6 = K — .

When wave scattering at the interface planes is incon-
sequential, the traveling waves along the positive 2 direc-
tion in the grating and in the regular waveguide can be
equated at the two boundaries. (This condition is also true
for waves traveling in the negative : direction.) If there is
no input power to the grating at = = L /2, then the coef-
ficient of exp ( jKz) in (21) is zero. This leads to the con-
dition

= —qpexp (PL) (22)

[N RS

where 7 = (Yy. ¥_3)/{¥u. Yo ). (The quantity ( f. g>
= | f *g dx is the usual inner product of complex func-
tions.) Similarly, equating the coefficients of exp ( —jKz)
and exp ( jKz) in (18)-(20) with the corresponding coef-
ficients in (21) at z = + L /2 leads to the field reflection
coefficient

n[l — exp (ZPL)]

TS 7" exp (2PL)

exp ( —jo..L). (23)
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The reflection coefficient R = |p|? is now computed in
the vicinity of the second Bragg condition. The duty cycle
W/A for the grating is treated as a parameter. Fig. 11
shows the amplitude of the first three spatial harmonics at
the bottom the grating (x = 0) as a function of detuning.
Note that the coefficients for n = —2 harmonic approach
the normalized value of the n = 0 harmonic in the vicinity
of the second Bragg. The parameter 5 should have a func-
tional dependence with respect to detuning that is similar
to the amplitude of the space harmonic amplitude A_,.
Namely, || has a peak value at 8 = K and decreases
with detuning. The quantity P = —a + j(K — ) can be
obtained from data given in Fig. 12. Near the second
Bragg resonance, A = 0.24 um. It appears from the re-
sults given in Fig. 12 that the largest duty cycle (0.66)
produces the *‘strongest’’ grating, while the smallest duty
cycle (€.33) produces the **weakest.’’ This phenomenon
occurs because optical field penetration of the grating re-
gion increases with duty cycle.

Fig. 13 shows the reflection coefficient R for the various
duty cycles as a function of the detuning parameter é. In
each of the figures. the grating length L takes on the val-
ues of 100, 200, and 300 um. In Fig. 13(a) where the duty
cycle is 0.33. the reflection coefficient peaks at a value
below the second Bragg condition, whereas in Fig. 13(c)
where the duty cycle is 0.66, R peaks at a point above the
Bragg frequency. These small local peaks in R occur be-
cause they reflect the functional dependence of a on de-
tuning as shown in Fig. 12; for the 33% duty cycle, o has
a local maximum below the Bragg frequency, whereas for
the 66% duty cycle, a has a maximum value above the
Bragg frequency.

VI. ConcLUSION

We have used a rigorous full Floquet numerical analy-
sis to investigate the modal properties and wave interac-
tions in a transversely bounded dielectric waveguide with
a rectangular surface corrugation. A specific double-het-
erostructure GaAs-AlGaAs waveguide geometry has been
examined in detail. This class of multilayered periodic
structures ¢.a be fur 0 [Lied exactly as a boundary value
problem. The purpose of such an exact analysis i1s: 1) to
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establish and understand the basic wave propagation char-
actenistics, 2) to identify various types of wave interac-
tions and coupling mechanisms, and 3) to present accurate
numerical results against which the effect of various ap-
proximations can be judged.

The boundary-integral-equation formulation has been
adopted for the solution of the wave equation inside the
grating layer. The boundary around each rectangular re-
gion constituting the unit cell is discretized into elements,
and a stepwise approximation to the field and flux along
the region boundary is assumed (boundary element
method). The tangential field continuity requirements
across the grating layer interfaces are imposed through
point matching with the Floquet expansions of the field
above and below the grating. Other continuity and peni-
odicity requirements are also imposed in the same way
across the unit cell interfaces. The dispersion relation is
thus a generalized transverse resonance-type matrix equa-
tion. The process of searching for the resonant solutions
of this equation is equivalent to the process of adjusting
the weights of the partial waves in the Floquet summation
as well as the propagation constant in order to satisfy the
boundary conditions on the grating surface. The results
thus obtained are inherently accurate, the degree of ac-
curacy being determined only by the number of boundary
elements used.
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Finally, the characteristics of a finite length grating have
been derived using the Floquet-Bloch solutions of an in-
finite length waveguide. To simplify the estimates of the
reflection and transmission coefficients of the finite length
grating, mode scattering at the interface between the reg-
ular waveguides and the waveguide with a corrugation was
neglected. Calculations show that the reflection coeffi-
cient of a finite length grating does not have a maximum
at the second Bragg frequency. Generally, the reflection
coefficient peaks at frequencies above the second Bragg
for relatively strong gratings. This phenomenon occurs

because the model absorption coefficient o peaks above
the second Bragg condition. Because o peaks at frequen-
cies above the second Bragg, the **stopband’’ occurs just
above the second Bragg. This phenomenon is to be con-
trasted with the *‘stopband’’ near the first Bragg region.
Near the first Bragg condition, the **stopband'’ is almost
centered about the Bragg frequency.
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ABSTRACT

The design procedures for the construction of corrugated waveguides of Al.Oj and the far field radia-
tion patierns observed from such waveguides is presented. The design procedure is based on the physics of
four layer waveguide structures. The corrugated waveguide is similar to a Bragg wype diffraction grating.
This corrugated structure provides 90° reflections at certain specific wavelengths depending on the grating
spacing. A particular advaniage of such structures that behave like grating antennas is that their radiation
patwern can be scanned electronically by changing the wavelength (frequency). This corresponds to chang-
ing the propagation constant of the propagating wave. The far field radiation pattern obtained from the
experimental set up is compared against simulations carried out using the Huygen - Fresnel theory and a
close agreement is seen between theoretical prediction and experimental observation. Specifically, the
design and the measurements are made in the frequency range from 80 GHz to 100 GHz for a number of
different kinds of structures including those with one as well as multiple sections of corrugations.

1. INTRODUCTION

Recent advances in the fabrication of millimeter - wave systems using integrated circuit technology
hac stimulated considerable ipterest in the use of corrugated dielectric structures’d. A dielectric
wavegside with a periodic surface corrugation bas been shown to hold substantia) promise as a leaky wave
auienna for millimeter wave applications. These dielectric antennas offer the advantage of electronic beam
siwering. This class of structures has been widely used for integrated optic applications as beam-to-surlace-
wave couplers, distributed feedback refiectors and filters. The physics of wave propagation in optical dev-
ices can be carried over 10 the design of these antenna structures and basic optical principles can be used o
provide information on the radiation patterns of such structures.

When a8 wave propagating in a corrugated waveguide reaches the corrugated (perturbed) area, two
things will occur: a portion of the wave will be difiracted out of the guide, into the air and the substrate,
and a portion will be reflected. This radiation occurs only in certain preferred directions, primarly

®Supported in part by the Army Researck Office.
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determined by the phase constant of the uncorrugated swucture and the period of the corrugations!. As a
consequence of the radiation loss, the wave guided by the structure decays exponentially as it propagates.
Hence the wave will exist with appreciable magnitude over a finite length of the waveguide and a beam is
radiated with a beam width proportional to the attenuation constant of the guided wave. Since the phase
and the attenuation constants determine the field characteristics, they are the most important parameters in
the physics of the operation of these devices. It is possible for the type of structures under consideration,
to estimate the attenuation. reflection and the transmission coefficients of the corrugated waveguide.

The work presented in this paper pertains to the design ol corrugated waveguides of A).O, with
dielectric constant of 9.6. in the frequency range from 90 GH:z tc 100 GHz. A number of such
waveguides were designed and constructed including some with multiple sections of corrugations. The radi-
ation patterns from these waveguides were measured at several different frequencies about the second
Bragg. The patterns were compared with those obtained from a simulation based on the Huygen - Fresnel
theorv. Close agreement between the two endorses the design procedures used for the waveguide and rea-
sonable accuracy of the procedures used for measurement of the radiation pattern.

2. THEORETICAL BACKGROUND

A perjodically corrugated waveguide is shown in Fig. 1a. (Throughout this paper it is assumed that
we consider only rectangular teeth, a groove profile that can be made easily and precisely by machining)}.
The waveguide antenna structure consists of two parts: one is the uniform waveguide (unpermrbed struc-
ture) and the other is the periodic Jayer. The width of the structure is "W’, the period of the corrugations
is "A" and the height of the corrugated teeth is "T". As an exact elecwomagnetic boundary value problem,
periodic dielectric waveguides have been treated for normal incidence (with respect to the direction of the
grating grooves and with the assumptions that both the antenna structure and the source distribution do
not depend on the coordinate parallel o the grooves {y-axis). Under these simplifying conditions. a gen-
eral electromagnetic wave propagating in periodic waveguide can be decornposed into independent TE and
TM modes. The studies carried out in this case pertain mainly to the TM mode propagation in the
waveguides.

2.1. Design of Corrugated Waveguides

The design of a corrugated waveguide used in this study is based on the theory of four layer
waveguides®. The algorithm for the design is based on TM mode propagation in the active layer of the
device. The solution of the wave equation from the Maxwell's equation is sought in each of the four
regions. The TM modes have only three components Hy, E; and E,. The contnuity of the transverse field
component. Hy and E; is used to derive the secular equation.

The solution of the four layer problem in terms of estimation of the propagation constant of the pro-
pagating wave, depends on the solution of the secular equation.

2.1.1, Design Procedures

Using the procedures outlined above, a waveguide structure is designed on which corrugations are
created in the active layer 3 of the structure. The corrugated waveguide is made of alumina of thickness
40 mils and dielectric constant of 9.6. The design is carried out for a frequencies of operation from 90
GHz to 100 GHz. The dielectric constant in the Region 3 of interest is dependent on that in Regions 2 &
4 and the duty cycle of the corrugations. The dielectric constant xy, in the active region is

Ky = D X xy+ (1=D¢)xq (1)

where D, is the duty cycle. The dielectric constant x5 of the region with corrugations, Region 3, is the
“average value” of the dielectric constant of the corrugated region as shown in Fig. 1b. The periodicity of
the waveguide, dependent on the frequency of operation is related to the duty cycle and the width of the
corrugations by
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where X is the free space wavelength under consideration.

The corrugations are created using a diamond blade. the blade thickness T, being related o the
periodicity A by

Te= A(l “‘Dc} (3)

Computations are made to find the different heights in the corrugations for the different blade thicknesses
st different duty cycles of the corrugations. The blade thickness being a constant in this case, the appropri-
ste 1ooth hieight is chosen. After the woth height is found, the grating period is determined.

2.1.2. Example

A npical example of the design procedure followed in one of the constructed waveguides is given
for a waveguide designed to operate at 90 GH:z. The main criterion was 1o find the height of the corrugs-
tions and the grating period A given the blade thickness T, which in this case was 0.6 mm. A computer
program. the algorithm of which is based on solving the secular equation was used w carry out the design.
The wavelength of the propagating wave inside the corrugated waveguide is

b

A, = ——

[ Bug (4)
where X js the wavelength of the the wave, n,¢ is the effective refractive index in the waveguide which is a
value generated in one of the subroutines of the program. Ap example is the design of a waveguide for
operation at 90 GH: Assuming that a strong grating of height 0.3 mm is desired, the blade thickness being
0.6 mm. from Fig 2a, the duty cyele is found w be 0.55. Once the duty cycle is known, from Fig. 2b, the
grating period for the woth height of 0.3 mm and given a duty cycle of 0.55 is found to be 1.325 mm.
Hence the design specifications for an alumina waveguide of thickness 40 mils and dielectric constant of
9.6. for propagating TN modes a1 890 GHZ are that the woth beight be 0.3 mm and the grating period be
1.325 mm. The performance of the waveguide in this example was in close agreement w theoretical pred.
jeuons. .

2.2. Brief Anslysis of Waveguides Prepared

A brief description of various waveguides prepared and their performance is listed below. A com-
parison was made of the experimental performance of the waveguides against theoretical expectation. It
was based on the calculation of the actual wavelength of the wave inside the waveguide as a function of
frequency. Two theoretical simulations were made using two principles: 1} The Effective Index Method®
and 2} The Slab Waveguide Method for a four or five layer structure. Experimentally, the relation between
the peak radiation angle © and the actual wavelrngth of the wave inside the corrugated waveguide is given
by, -

}isine
A= A(Tl) (%)

where
A = period of the corrugations
© = peak radiation angle
Ao = free space wavelength

Fig 8a gives the comparison of the wavelength against frequency for a waveguide with depth of cor-
rugations T of 0.28 mm and grating spacing of 1.33 mm. In the figure, SLAB corresponds o simulated
resulte using the four or five Jayer slab waveguide approach, EIM corresponds w the simulated values
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using the Efective Index Method. EXPF corresponds 1o the experimental results from the Bat side of the
waveguide and EXP C is the experimental observation from the corrugated side of the waveguide. The
tesults show a close agreement between the various simulations and experimental resuls. Fig 3b
corresponds 1o the case of a waveguide with corrugations depth 0.45 mm and grating spacing of 1.225 mm. -

2.3. Measurement of Radiation Pattern

The experimental set-up used w measure the radiation pattern of the waveguides is shown in Fig. 4.
The various components of the set up are:

S1 Frequency tunable IMPATT diode oscillator{ 90 - 100 GH1 )

hY 9! Ferrite modulator, used w chop the incident wave for the purpose of lock-in amplifier
fmeasurement.

i Precision frequency meter.

Al.A2 Variable auenuator

DC1 3 dB directional coupler.

PH1 Rotary type phase shifter

SW1.8W2 Manual waveguide switches

T1,T2, T3, T4 Matched terminations

D1 Flat broadband detector with horn antenna set up in 2-polarization

CDW Corrugated waveguide under observation

The electromagnetic wave propagating along an axially periodic waveguide structure can be expressed
in terms of an infinite bumber of traveling waves of the form, h,(x)e ™ called the spatial barmonics. The
field is given by

CH, =3 by(x)e (6)
with

-n - n ...
r ) n=0,%1, %2

Ta=a+ )8+

where
o is the attenuation coefficient
By is the propagation constant
A is the period of the corrugations

Ao can be found approximately by using the average dielectric constant and solving the slab waveguide
problem’.

The field described above is one of the two self consistent solutions for the slab waveguide. The first
of the solutions is the TM modes copsisting of the components E,, H,,and E, while the second is the TE
modes consisting of the components E,, H,, and H,. The width of the corrugated waveguide is taken to be
larger than the supported wavelength in which case it can be treated as a slab waveguide. The TM modes
of the slab dielectric waveguide maich the TE,, in the metallic waveguide best. Just one mode being sup-
ported by the metallic waveguide is due to the small dimensions of the metallic waveguide(1.25mm x
2.50mm). The cut off frequency of the TEy, dominant mode is 60 GHz and the next mode TE,q is cut off
at 120 GH:.

In the experiment, the source oscillator is operated in the frequency range 90 GH: to 100 GHz. As
seen from the sbove equations, given s source oscillator upto 100 GHi, the metallic waveguide can only

. 5
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support the TE(. mode

2.3.1. Far Field Radiation Pattern

The far field pattern of the radiation from the corrugations can be found usmg the Huygen - Fresnel
formulaef. The magnetic feld amphwde at 2 point (R, ©) as shown in Fig. 5 is given by

In.
fcxp-—H ic’S—:—ﬂ—clz (7)
xcos® [Hy(z)exp.Ko(-25in€ + 7§-—)' (8)

Radiation i¢ produced by the n = -1 Floquet.Bioch partial wave.

F.L(R,©) o jexp -0 exp -J(S;#T)z exp Ko —25in€© + 2R ) (9)
The magnetic component of this feld is polarized in the y-directon while the electric field is polarized in
the x-direcuon

3. RESULTS

As mentioped, Fige 2a and 2b give the resulic on the waveguide design. Fig. 6 shows a comparison
berween the experimentally observed radiation pauern (dotied curves) and the simulated resulis (solid
curves). The figure shows that the ratio of spread in the beam w the corresponding frequency scan in the
source 1s.

Experimental: -‘%re— =20°/GH:

. A5 ,
Simulated: = " 1.9° /GH:
The simulation curve shows a shift of +4° The reason for this could be that the actual value of 8, is
smaller than the calculated value which uses the slab waveguide theory. Figs. 7a and 7b show resulis
obiained from experimental and simulaton of the radiation patterns from a blazed structure. The results
yield

Experimental: -%—?— = ].8° /GH:
Simulated: 95- = 2.0° /GH1

The same reasons as the earlier could be attributed to the difference in the values. Fig. 8 shows results
from the experimental set-up by combining two waves made incident from either end of the waveguide
and wning a phase shifter w get 3 maximum or minimum. The 'Bips’ correspond to the case of the radia-
tiop measurement from the nob corrugated side (flat slab side).

Fig. 9 depicis s situation where waves are made to be incident from both ends of the waveguide and
the phace shifter ic adjusted 1o get 2 maximum (max) or s minimum (min). ’Forward’ eorresponds w a
ease whep waves are incident only from the forward direction of the waveguide and a measurement of the
radiation pattern is made. The waves are made incident from the reverse direction o get the radiation pat-
tern labeled 'reverse’.

Experimental stodies were made on corrugated waveguides consisting of two sections on the same
slab These were designed and copstructed 1 measure the refiection, transmission and astepuation
coefbcients of the corrugated waveguides. Fig. 102 and 10b show the radiation pattern from the two sec-
tons ‘A’ and 'B’ of the waveguide for different frequencies . These can be used w find the auenuation and
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transmission coefficients. For example, a calculation of the transmission ard anenuation coefficients using
the relation.

P = Poe_m (10}

where Py is the incident power while P 1s the power at some point along the waveguide. Use of this rela-
tion and the use of the values from the curves yields a transmission given by P/Pg of 0.78 and a atterua-
tion constant of 0.079 ¢m for the waveguide under consideration.

Studies are carried out on a two section waveguide by tuning the source osciilator to the second Bragg
frequency of the average Bragg frequency of each of the sections. The autenuator is adjusted to get equal
peak intensities from both sections. The experimental pattern observed with such an arrangement along
with a comparison of simulation of the conditons is shown in Fig. 11.

Jt is noticed that the curves are not perfectly smooth which could be artributed o the fact that there
is interference with other sources of radiaton such waveguides as leaky wave antennas or as surface emit-
ting structures '3 the frequencies from 90 GHz to 100 GHz. The study brings out the practical use of the
physics of the four layer problem and the Huygen’s principle in the fear field measurements. Transmission
and reflection coefficients of different kinds of waveguide structures bave been found. The effect of
losses and detuning from Bragg condition has been brought out. The peak reflectivity in some cases does
pot occur at the Bragg condition. These effects could be due to complicated interactions of the guided
modes. radiation fields and evanescent waves.
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Figd4. Experimental setup to measure the far Seld
radiation patterp of corrugated waveguides.
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Fig:10a Radiation pattern from one of
the two sections 'A’ of a two
section waveguide.
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ABSTRACT

In this experimental study we investigate the guided mode-radiation mode coupling of
periodic dielectric waveguides. The dispersion relation and the attenuation constant along the
dielectric waveguide were measured around the second Bragg frequency. The far field radiation
pattern was also measured. Floquet theorem was applied to solve wave equations. Zero order
approximation was used in the design of waveguides. For surface emitting structures used in
surface emitting lasers and couplers, the most important parameter is the dispersion relation
and attenuation constant along the corrugated waveguide around the second Bragg frequency,
The dispersion and attenuation measurement shows that the attenuation constant minimum
occurs at the second Bragg frequency. This corresponds to the maximum Q point of the corru-
gated waveguide. Two side incidence shows that in the out of phase condition the radiation
power is minimum at the second Bragg frequency and have two lobes.

1. INTRODUCTION

Intcgrated circuit technology played a significant role in the fabrication of optical
waveguides in recent days which simulated considerable interest in the use of corrugated dielec-
tric striectures. A dielectric waveguide with a periodic surface corrugation has been shown to
hold substantial promise as a leaky wave antenna for millimeter wave applications. This class of
structurcs has been widely used for integrated optic applications. The physics of wave propaga-
tion in optical devices can be carried over to the design of these antenna structures and basic
optical principles can be used to provide information on the radiation pattern of such structure.

When a wave propagating in a corrugated waveguidde reaches the corrugated area , two
things will occur: a portion of the wave will be diffracted out of the guide, into the air and the
substrate, and a portion will be reflected. This radiation occurs only in certain preferred direc-
tions, primarily determined by the phase constant of the corrugated structure and the period of
the corrugation. As a consequence of the radiation loss, the wave guided by the structure decays
exponentially as it propagates. Hence the wave will exist with appreciable magnitude over a
finite length of the waveguide and a beam is radiated with beam width proportional to the
attenuation constant of the guided wave. Since the phase and attenuation constants determine

* Support. d in part by the Army Research Office.
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the ficld characteristics, they are the most important parameters in the physics of the operation
of these devices.

This paper deals with the design of corrugated waveguides of Al,O; with € = 9.6 in the
frequency range around the second Bragg condition. The attenuation constant, the dispersion
realtion and the radiation pattern were measured around the second Bragg frequency. The pat-
terns were compared with those obtained from a Huygens-Fresnel principle. The understanding
of the wave propagation along the corrugated waveguide helps in the design of surface emitting
lasers and couplers.

2. THEORITICAL BACKGROUND

The near field distribution for the frequency around the second Bragg coupling is [1}-[5]:
H, =Cexp(—az—j(f—k)z) (1)
Where I/, = y component of the magnetic field of the TM mode, o = attenuation constant,
-—plopa"atlon constant, k=01 , here A is the period of the corrugated waveguide. By using the
Huygens-Fresnel principle [6] the field distribution at point (R,0) is approxlmated as

F(R,0 orfexp —az )exp(—j (B—k )z Jexp(sk, (—zsinf+2— oh ))d (2)

where IR is the distance from the waveguide to the receiver, & = receiving angle of the
detector,k, _21, X being the free space wavelength, and a,b represents the upper and Jower lim-

its of the corrugation. From (2) the absolute value of F(R,f) occurs at 6,,, and can be found
approximately by setting A—k-+k, sml?max =

,6’——2(1—(!(: smemu)) (3)

and 0_,, was measured by L +8,/5 1) where 8 and £ are half power points on
5 \Y1/2,R T, 1/2,R 1/2,L

max
either side of the central peak of the radiation. The dispersion relation ﬂ%— versus k, A is plot-
ted using (3).

2.1 Attenuation constant

The power radiated from the corrugated waveguide of length L is designated by P; and is
proportional to 1—ezp(—2al ). By covering half of the far end corrugation the power radiated
from the waveguide (P} ;o) was measured which is proportional to 1—exp(—alL ). By measuring
the ratic of P; and PL/Q for different frequencies, the attenuation constant can be obtained by
using the relation

o= n(k 1) (4)
L PL/2

3. EXPERIMENTAL SETUP

The detailed experimental setup is shown in Figure 1. The functional blocks of the setup
are as follows.
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S: Tunable DMPATT oscillator.

M: Ferrite modulator: Used to chop the incident wave for the purpose of lock-in amplifier meas-
urement.

FM: Precision frequency meter.

Al, A2, A3: (Variable atténuators): Al is used to regulate the mm-wave power entering the sys-
tem. A2 and A3 are used to regulate the power incident on either side of the dielectric
waveguide.

DC1, DC2, DC3: (Directional couplers): DC1 is a 3 dB coupler used to divide the power into the
two branches of the experimental setup. DC2 and DC3 are 10 dB couplers used to monitor the
incident power level.

SW1, SW2: (Manual waveguide swithces): In the "open" position all the power is dissipated in a
matcheu terminator.

PH: (Rctary-vane phase shifter): This is used to control the phase relationship between the two
incident waves.

D1, D2, D3: (Flat broadband detectors): D1 and D2 are used to monitor the incident power and
D3 is used to detect the far-field radiation. Lock-in amplifiers are used to amplify the signal

from tl« detector. The output from the lock-in amplifier is directed to personal computer
through the HP-IB.

MA: Motor assembly and linear potentiometer are used to rotate D3 and to measure the angle
with the help of a computer.

CW: Corrugated dielectric waveguide under test. The physical structure of the waveguide is
shown in Figure 2. (Shown four teeth only).

AS: Millimeter wave absorber used for attenuation constant measurement.

3.1 Wareguide specifications

Th: waveguides used are made of Al,0; having € = 9.6. The dimensions of the two
waveguides are as follows. waveguide #1: Period A = 1.333 mm, teeth width, tw = .6 mm,
teeth huight, th =.18 mm, number of teeth = 31, thickness t = 1.01 mm waveguide #2:
Period A = 1.333 mm, teeth width, tw = .6 mm, teeth height, th = .2 mm, number of teeth
= 32, thickness t =1.01 mm

4. EXPERIMENTAL RESULTS

For corrugated waveguide #1, the calculated second Bragg frequency usin Zero order
approximation and effective index method is 89.0 GHgz, i.e, k, A = 2.485. The experimental
minimum of attenuation occurs at k, A = 2.538 which corresponds to a frequency of 90.9 GHz,

and ﬁ% = 2.03 ( ﬁ-j—} = 2,00 is the second Bragg condition). This result is shown in Figures 3

and 4.

For corrugated waveguide #2, the calculated second Bragg frequency is 89.4 GHz, i.e, k, A
= 2.496. The experimental minimum of attenuation occurs at k, A = 2.558 which corresponds
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to a frequency of 91.6 GHz, and ﬁér\_ = 2.00. This result is shown in Figures 11 and 12. The

second Bragg frequency is about 2% higher than the calculated value.

The experimental far field radiation pattern is very close to the calculated radiation pat-
tern bascd on Huygens-Fresnel principle. The attenuation constant used in the caleulation is o
= .2/cm, and the corresponding value of the attenuation @A = .026. For two side incidence it
simu atcs the operation of a surface emitting laser at second Bragg frequency. By changmg the
phase shift between the two incident waves the output power can be changed from maximum to
minimum. These two cases corresponds to in- phase and out of phase conditions of the two
incident waves respectively. The maximum Q is obtained at the point where the radiation is
minimum.This happens at the out of phase condition of the two incident waves. The radiation
appears in two lobes as shown in Figure 7. The calculated normalized radiation pattern at the
out of phase condition is shown in Figure 9.

5. REFERENCES

[1) G. ladjicostas, J. K. Butler, G. A, Evans, N. W, Carlson, and R. Amentea, " A numerical
investization of wave interactions in’dielectric waveguides with periodic surface corruga-
tions,” IEEE J. of Quantum Electron., vol. QE-26, pp 893-902, May 1990.

[2) G. Hadjicostas, " Modal properties of planar dielectric waveguides with a surface corruga-
tion," Ph.D Thesis, EE department, Southern methodist university, Dallas, TX, 1988.

[3) S.7T.Peng, T. Tamir and H. L. Bertoni, " Theory of periodic dielectric waveguides,” IEEE
Trans. Mierowave Theory and Tech., vol. MTT-23, pp. 123-133, Jan. 1975.

[4] K. llanda, S. T. Peng and T. Tamir, " Improved purturbation analysis of dielectric grat-
inzz", Applied Physics, 5, 325-328, 1975.

[8]) W. Streifer, D. R. Scifres, R. D. Burnham, Analysis of grating-coupled radiation in
GaAs:GaAlAs Lasers and waveguides”, IEEE J. of Quantum Electron., vol. QE-12, pp
422-428, July, 1976.

6] J.W. Goodman, " Introduction to Fourier Optics, McGraw-Hill, New York, NY. 1968.

SPIE Vol. 1634 Laser Diode Technology and Applications IV (1992) /4573



Figure 1: Experimental setup for dispersion relation, atlenustion constant,
. Mﬁu field udnrnon pattern measurement, R = 00 em.
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Figurc 2: Structure of the corrugated dielectric waveguide made of
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A Boundary Element Technique Applied to the
Analysis of Waveguides with Periodic Surface
Corrugations

Jerome K. Butler, Fllow, IEEE, Warren E. Ferguson, Jr., Gary A. Evans, Fellow, IEEE,
P. 1. Stabile, Senivr Member, IEEE and Arye Rosen, Fellow, 1EEE

Abstract—Boundary integral formulation is used to charac-
terize Floquet-Bloch modes of two-dimensional multilayered
periodic waveguides. A new technique is described for match-
ing fields inside the grating to those external to the grating re-
gion. Although a simple four layer structure is used to illustrate
the method an extension to multilayer waveguide structures is
straightforward. The mathematical formalism has been sim-
plified, allowing for more efficient computations using fast Fou-
rier transform algorithms.

[. INTRODUCTION

ERIODIC structures designed 1o interact with propa-
gating waves have been of interest for almost seven
decades. Recent advances in semiconductor devices and
processing technology has led to the employment of pe-
riodic structures in distributed feedback lasers [1], {2], in
superlattices [3]. and in millimeter-wave [4] and optical
surface emitting [5] sources. )
Numericatl sotution of many two dimensional problems
can be reduced to once-dimensional problems through the
use of Green's theorem. Onc popular method that uses
this technique is called the boundary element method
(BEM). Early applications of the BEM for the solution of
static ficlds as well as for wave propagation problems were
discussed by Brebbia [6), 17]. Application of the BEM to
related clectromagnetic ficld problems has received more
recent attention [B}-[11]). Characterizing periodic wave-
guides has been accomplished by vanous methods. Ap-
phication of the numerical boundary element method s
relatively new; it was first applied to periodic millimeter-
wave structures [12]-]14]. and to optical waveguides vused
for surface emitting lasers [[S]. Although BEM can be
used on general types of periodic structures, it is partic-
ularly uscful in the analysis of optically induced periodic
structures. In these structures optical energy is used to
excite electron-hole pairs, periodically, in a dielectric
waveguide fabricated from a semiconductor material.
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Structures with a uniform distribution of light encrgy, such
as a dielectric waveguide fabricated from gallium arse-
nide-aluminum gallium arscnide or thin silicon on sap-
phire (SOS), have been analyzed [16]. However, in the
case of an all silicon guide, the distribution of the ab-
sorbed optical energy (hence electron-hole pair density),
as measured from the surface of the waveguide, varies
with depth [17]. Since this also results in a variation of
the complex permitivity, it ts best analvzed as a large
number of layers each with a distinct complex permittiv-
iy.

This paper presents theoretical details which underlic
the numerical application of the boundary etement method
(BEM) to the analysis of periodic dielectric waveguide
structures. While this theorctical analysis supports gen-
eral represcntations of the solution on the boundary of the
grating, particular attention has been paid to the represen-
tation obtained by lincar combinations of piecewise con-
stant functions. Although the theoretical development is
applicable (o structures with multiple layers on cither side
of the corrugation region, the method is applicd here to a
simple four layer diclectric structure with rectangular cor-
rugations™ The. top layer is air while the bottom layer is
assumed to be a semi-infinite dielectric material. The
grating lies between the air and central dielectric layer.

In the representation of the solution in regions above
and below the grating the ficlds are represented by dis-
crete Fourier series along the grating interfaces. In the
event that a large number of boundary clemems are re-
quired, fast Fourier transform techniques (FFT) can be
employed to speed the computations.

II. PROBLEM FORMULATION

Consider the diefectric waveguide geometry with a
grating as shown in Fig. 1. The dielectric substrate and
air superstate regions are assumed to be half spaces. The
grating consists of the periodic juxtaposition of homoge-
ncous rectangular Region A (dielectric constant «3) and
Region B (diclectric constant «,). The (x, 2) region (— oo,
o) X (0, A)is called the unit cell.

A time harmonic transverse electric (TE) wave is as-
sumed to propagate in the axial 2 direction as exp (jwr —
v2). For the sake of simplicity it is assumed that the ficld
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Fig. 1. The basic dielectric waveguide structure.

is invariant with respect to y. The complex propagation
constant is ¥ = a + jB. Although electric field polariza-
tion along the y direction is assumed, it is straightforward
to extend the analysis to other polarnizations. Polarization
along y corresponds to the TE case where it is assumed
that E, = V.

The core problem that must be solved is a characteris-
tic-value problem in the grating region. This characteris-
tic-value problem involves determining the value of the
Flogquet multiplier y so that the wave function V¥ is a so-
lution of the differential equation

VY + kik(x, D)V = 0. (1

Here ko = 27 /X is the free-space wavenumber and «(x,
¥) is the point dependent relative dielectric constant. The
two dimensional wave function ¥ (x, z) is required to sat-
isfy the periodic condition

Yx,z+ A = ¥(x, 2)exp (—vA). 93]

Frequently, it is convenient to write the wave function in
terms of an *‘amplitude’* modulation function & (x, 2) as

¥ix,2) = $x, 2) exp (—-v2) (3)

where $(x, 2) = ®(x, £ + A) is a periodic function with
period A.

The solution of the differential equation (1) is some-
what simplified by the fact that the unit cell is stratified
into layers. In all layers where the dielectric constant is
independent of z, i.e., the nongrated regions, the solution
of the differential equation can be written in closed form.

The solution in layer 2 provides most of the interesting
features of the present problem. In specific areas of the
grating regions, Region A or Region B, the dielectric ma-
terials are homogeneous. The corresponding fields of each
region satisfies the two-dimensional scalar Helmholtz
equation: '

v v,

F+3?-+k5x~1'=0. CY
The solution for ¥ in these regions is determined by a
boundary integral formulation. The resulting characteris-
tic value problem is obtained by appropriately matching
the fields in the grating to those analytical forms above
and below the grating.

IEEE JOURNAL OF QUANTUM ELECTRONICS. VOL 28, NO 7. JULY 1992

III. FieLp SoLuTioNs QuTsIDE GRATING

First, to properly formulate the problem, the wave so-
lutions above and below the grating are derived. In the
uniform layers above and below the grating, the field
expressions have to appear in the Floquet-Bloch form in
order to satisfy the boundary conditions on the grating
surface. In the ith layer the solution becomes:

Y0, 0) = exp(=12) X (x) exp (—jnK2). (5)

Here K = 27 /A is the grating wavenumber. OQutside layer
2 as shown in Fig. 1, the spatial harmonics ¥,, are uncou-
pled and satisfy the equation

dz\f’m

dxz
where v, = y + jnK. In the semi-infinite layers ! and 4,
the solutions become

+ [kfx + ¥l =0 (6

Via(x) = ¥1a(x)) exp [hy,(x; = x)] M
and

Van(x) = un(x3) €xp [hey(x = X3)] ®
where the transverse wavenumbers h, = =+ (ki +

v2)!/2, The sign of the radical is always chosen such that
analyticity is maintained in the vicinity of the second
Bragg condition [18]. In the layer adjacent to the grating,
the solution becomes

V3n(X) = ¥3,(x3) cos [A3,(x — x3)]

+ ¥ 3a(x3) sin [h3,(x — x3)]/ k3, 9

where § ' = dy /dx. It should be noted that the functional
dependence of ¥s,(x) and its derivative are written in
terms of their initial values at x = x,. In view of the above
condition it is convenient to represent y,,(x) and ¥, (x) in
terms of the vector

Vin (%)
[V (X)) = .

(10)
¥ in(X)

Because E, and its derivative are continuous across the
boundaries, it follows that the individual space harmonics
and their derivatives are continuous across each interface,
i.e., ¥3.(x3) = Yan(x3) and ¥3,(x3) = ¥4,(x;). This im-
plies the state vectors are continuous across the bounda-
ries.

While the second order differential equation (6) has two
solutions in the interior layer 3, application of the bound-
ary conditions imposed at x = +oo allows only one so-
lution in layers 1 and 4. Accordingly, there is only one
unknown coefficient in the field solutions in those layers.
In total there are only two unknown coefficients, those
due to the solutions on either side of the grating region.
By judiciously transforming the spatial harmonic solu-
tions in the outside regions to the grating, the partial waves
at the boundary of the grating can be expressed in terms
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of a single constant. In terms of the transverse wavenum-
ber and layer thickness,

[¥3a(x2)) = Ts, | ¥snlx3)) (11)

where the vector |3, (x2)) = col (¥3,(x2), ¥3.(x2)) rep-

resents the field and derivative at x = x, and | {4, (x3)) =

Van (x4) col (1. hy,) represents the field and derivative at
= x3. Therefore, the transformation matrix Tj, is

in (haywy) /s,
Ty, = [ _ o (e ’] (12)
—h3, sin (B3,w3)  €OS (h3w3)

where wy is the thickness of the intermediate layer as
shown in Fig. 1.

The process of formulating *‘closed-form’’ solutions for
the individual spatial harmonics outside the grating region
is possible because the harmonics are not directly cou-
pled. Overall coupling of the space harmonics arises from
the interaction of the harmonics in the grating region. The
desired Floquet multiplier that renders the proper Flo-
quet-Bloch mode is determined from the characteristic
equation obtained by matching the field solutions outside
the grating region to those inside the grating. This process
of producing the secular equation is common to all meth-
ods used to determine the characteristic modes of periodic
structures. The method used in this paper is called the
boundary element formulation and ts described below.

cos (hy,w3)

IV. BouNDARY INTEGRAL FORrRM

The field solution inside the grating is now addressed.
In the grating layer the coefficients ¥, are all coupled to-
gether. It is convenient to avoid the laborious exact so-
lution for the field everywhere inside the grating and seek
a relation between ¥ and its normal derivative only along
the boundary enclosing the homogeneous regions A or B.
Towards this goal. we convert (4) into an integral equa-
tion. Results based on the numerical solution of integral
equations have the advantage of being accurate even if the
boundary conditions are only approximately met. In par-
ticular, for the problem at hand. the field and flux will be
assumed piecewise constant and so a collocation (point
matching) technique will be used to impose field conti-
nuity and periodicity.

According to [6]. through the use of Green's second
identity, (4) becomes:

H (Gix. 7, 7)VIV () — YAV, Gx, 7, 7)) ds
R

~ <§> [c«, ey B0 g ML) )j'dl.
c dn an

(13)

The left-hand side is a surface integral over the transverse
plane Region R and the right-hand side is a closed line
integral over the boundary contour ¢ that encloses R. The
quantity d/dn denotes the outward normal derivative.

When G in the above equation is chosen 10 satisfy:

ViGk F.F') + kpkGix, F, F') = =8(IF — F'|)  (14)
then (13) reduces to:
Y = <§> [G(x.;.?')aw’ )
aG(x. 7, 7'
_ gy T )}dl (15)
on

where 7 € R, whereas 7' € c. (Specifically, region R is
region A or B of Fig. 1.)

Solutions of (14) in two-dimensional space can be ex-
pressed in terms of Bessel functions. For a finite domain,
any combination CoJ, — (1/4) Y, can be used (note that
J, is a solution of (14) only when 7 # 7'). The coefficient
of Y, is determined to be —1/4 from the singularity con-
dition at ¥ = 7’. For an infinite domain C, must equal
—j/4 because only the second order Hankel function
-ji(1/&HS = —j(1/4)(J, — jY,) satisfies the proper
radiation condition (outward traveling waves vamishing at
infinity). Analytically the results should be independent
of Cy, but because the computations are done numeri-
cally, other choices of C, seem to produce less accurate
results. In panticular, when C, = 0 the convergence rate
is rather slow when the thickness of the grating layer ap-
proaches zero. With Cy # 0 the boundary integral ap-
proach used here automatically includes those conditions,
previously proposed [10], that employ no singular func-
tions. Since we found no consistent way of optimizing the
value of C,, the zero order Hankel function, unless oth-
erwise stated, shall be used throughout, i.e.,

Gk, 7. 7') = ~js HR (oeVk[F = 7']).  (16)
In the limit when 7 approaches the boundary, (15) be-
comes [6]:

av(r)

%‘1'(7) = § {G(n. 7T
_ \p(;').%-_"_’_)] dl (]7)
an
where 7, 7' € ¢ and {, dl denotes the principal value line
integral with the contribution of the singularity already
accounted for.

V. BOUNDARY ELEMENT METHOD

The integral equation (17) is discretized to a finite size
matrix equation to obtain a numerical solution. The rela-
tion between ¥ and ¥ /dn for each region is independent
of each other and so the equations are treated separately.
The contours bounding regions A and B are partitioned as
illustrated in Fig. 1. Along the bottom and top boundaries
the partition length is A = A/(N} + NZ) while the sides
have A = w, /N3, where w, is the thickness of the grating
layer as shown in 1. Note that the element lengths along
the top and bottom of the unit cell are id- ..ical. Following
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(6], we can write (17) as:
N

I
%u, =2 qS, - 2 udD
=1 J

=g i

(18)

where

S, = )[ Gix, 7., ) d

3G(x, 7., 7,)
:DU = gq on l d

and 4, and g, are the field amplitude and flux, assumed
constant over the jth boundary segment.

Upon placing 3 = D + 1/29, where 9 is the unit
matrix, (18) becomes:

5fut = g"g" (19)
which, for every region R(= A, B}, relates the value of u
at the midnode i, with the values of u and du /dn at every
other node j, including j = i.

All line integrals along the elements ¢,: j # i, can be
calculated numencally using a 4-point quadrature rule
[19], or using ADAPT as discussed in the Appendix.
When j = 1, the integration path ¢, = ¢,, contains the
**source point”’ 7, = (x,, z,) and a logarithmic type sin-
gularity is present. Even though this singularity is analyt-
ically integrable, a logarithmic Gauss quadrature rule has
been used again in order to maintain good accuracy.

Ordering the elements of G and D in each of the regions
proceeds by numbering the elements in a counter clock-
wise direction starting from the lower left comer. In re-
gion A, there are N* = N2 + N} + N! + N§ elements.
whereas region B has N8 = NB 4 Nf + N8 4 NE ele-
ments. (The superscripts identify the two regions.) The
sides have N3 = Nj = N¥ = N5, The top and bottom
elements have N = N!and NZ = N8 To facilitate
matching the fields in region A to those of region B, and
the grating fields to the outside layers. the element order-
ing on sides denoted as having N, and N, elements, is
reversed. This can be accomplished by interchanging ap-
propriate rows and columns of G and D.

VI. FieLp aNp Frux MATCHING CONDITIONS
The vectors u® and g* are partitioned as

Ua qq
R R
Uy 9
e B L B 20)
u(' q{'
uf 95

The corresponding matrices 3C? and QF are also parti-
tioned accordingly.

For each region, (19) represents a set of N* + N5 ho-
mogeneous equations with N* + N® unknown fields and
fluxes. or a total of 2(N* + N¥). The equations needed
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to determine the solution are provided by imposing con-
tinuity across the x = 0 and x = w, interfaces, as well as
continuity and periodicity conditions across the Region
A-Region B interface. The interface between the lower
section of the waveguide and the grating regions A and B
is shown in Fig. 2.

In the limit as the tooth height becomes small, the
waveguide looses its periodic nature. The Floguet-Bloch
modes approach those of a regular dielectric waveguide;
accordingly the field amplitude tends to a constant value
with respect to z. Because numerical accuracy of the
boundary element method using piecewise constant ele-
ments is improved when the unknown variables are al-
most constant, it seems appropriate to configure the pres-
ent problem to one where the unknown vanables along a
boundary are almost constant. To carry this condition into
the model, the field and flux amplitudes are transformed
as follows:

uf = TFU§ @1

ul = rRUf (22

ufF =ThyR (23)

7 = I (24)

The corresponding transformations of the flux vectors are
p¥ =rkpt (25)

ps = T§IPS - yU5) 6)

pd = T¢P! 27)

pi = T{IP] + yU§). (28)

The matrix T'f is diagonal (Nf x Nf) with elements
T§, = exp (=vz,), where ¢ = a, b, ¢, d, refers to the
different sides of region R. The coordinate position 2, cor-
responds to the location of the nth element and is given
by (region A):

Q-1a/2, I=1---,N}
A/2, =1+ ,N}
YTl @-nan r=1,--+, N
0, T l=1,--+,NJ

The corresponding z, values in region B are obtained by
adding the half period A /2. Note that the elements on the
sides have constant z; values and that the element ordering
along the top proceeds in a clockwise fashion.

Boundary conditions between regions A and B consist
of continuity conditions applied to the field and flux val-
ues of each of the two regions. Note that the resulting
cquations specify the conditions on the field and flux
“*amplitudes’” U® and P® as compared to the field and
flux values «*® and p*, originally given in [13]. Field con-
tinuity gives
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Fig. 2. The interface between the lower waveguide and grating region.
The center position of the {th element 1s Jocated at 3,

while flux continuity yields

P8 = -pP}. (30)
The periodicity condition specified by (2) requires

Ui = Uy 3N
for the fields and

P} = -p} (32)

for the fluxes.

The field and flux values inside the grating must match
those on the outside lavers. Fig. 2 shows the boundary
points at either the top or the bottom of the grating layer.
(For the sake of simplicity it is assumed that there are
even number of boundary points. i.e., N + NJ = N,is
an even number.) The number of grating points also rep-
resents the number of spatial harmonics used in the ex-
pansion (5). The field “amplitude’” values at the bottom
of the grating are represented by the two vectors U} and
U2 so therefore field continuity conditions yield

®,(xy, 2))

U: 4’3(—"2, )
UB = .

‘b:* (X: . :\.r)

(33)

The flux “*amplitudes’" are represented by the two vectors
P} and P8, so flux continuity is satisfied by requiring

P,4
LJ B

where ' = 3% /ax. Note that the negative sign for the
elements on the RHS of the above equation is present be-
cause flux values are directed outward from each of the
two regions. The linear equations resulting from imposing
boundary conditions at the top of the grating are similar
10 (33) and (34). )

In the following discussion, a unique representation of
the field and flux values will be represented in terms of
the discrete Founer series of the spatial harmonics. This
simplified representation is possible because 1) the
boundary element locations are situated at uniform points
along the top and bottom of the grating, and 2) the prop-
agauon term has been lifted. If N, is the total number of
boundary elements, then KA = 27 /N, In terms of the

~®3(x, 2y)

-&3(x., 2))
e (34)

—®3(x2, 2n)

i70s

spatial harmonics y,,, the amplitude coefficients are
NpJ2~ )
- — v : ’
Py, ) = L Yaalxy) exp (—jnKz).
n &

= ~ Ay,

(35)

Putting W = exp (=j2n /Ny), $3(x;. ) = ¥, and ¢, =
Vi, (x3, ) W™/ the above expression can be written as

$, = 2 0, W™ (36)

The sets of numbers ¢, and ¥, form a discrete Fourier
series pair of order N, denoted as $; ~* o¢,. The inverse
is [20]
i
=—2 oW 7
“=y e (37)
Similarly, the flux terms produce a set of numbers $; and
¢, that form a discrete Fourier series pair of order N,
b~ .
The quantities ¢, and ¢, are related through the trans-
formation given in (11)

8n _ Doy + Tan2hyn
¢n TBnII + Tlnllh-ln

where Ty, is the kith element of the matrix T;, as given
by (12). (The negative sign has been added to the defini-
tion of r, to reflect the fact the outward flux from regions
A and B is directed in the negative x direction. This rep-
resentation simplifies a later result.) In the event that the
number of layers below the grating must be increased. the
equivalent matrix elements must be used in (38). (The
equivalent matrix is the product of the transfer matrices
of the individual layers.)

The application of the boundary conditions at the bot-
tom of the grating as described by (33) and (34) yields a
linear relation between the field and flux values given by

= —=1/(N;r,) (38)

Us P
[Uf] - {PSJ 7
where QR is the circulant {20] matrix
Ro Ry - R.v,-l
@ =| ot Bt Ry (40)

R‘ R: e RO
The elements R, and 7, also form a discrete Fourier series

pair of order N;, where

Rl = Z r,,W'".

(C:3))

Application of the boundary conditions at the top of the
grating is similar to the process at the bottom. Although
the panticular problem at hand has only one layer above
the grating, multiple layers above the grating can be
treated similarly to the method described above for mul-
tiple layers below the grating. The field and flux values
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are linearly related according to

U P4
LﬂJ=S[PJ @2

where 8 is a circulant matrix whose elements §,; are de-
termined from the discrete Founer series

5 = Zs,w (43)

where s, = —1/(Nshy,).

After appropriate substitution we end up with a system
of N* + N® equations and N* + N2 unknowns; the coef-
ficients of the N* + N? unknown boundary fields and their
normal derivatives form the complex elements of the ma-
trix & [14]. The resulting linear set of equations becomes

I‘Ugj
P
P3
P;
/A
Py
P¢
P
The matrix § is partitioned with 2 rows and 8 columns as
_ [t +4Ghe™ e
-~ LH] = vGhHe "
Hj -+G; G;
HE +4GE =Ge™ HITZS,,

(44)

¥

Such a homogeneous system of linear equations will
have a nontnivial solution provided that the determinant
of the matrix § vanishes. Since the only unknown in § is
v, the resonant solutions, if any, of the determinantal
equation will give the propagation constants for the struc-
ture modes:

det [F(y)} =0 (46)

Following the computation for v, all the unknown fields
and denvatives can be evaluated under a suitable normal-
ization condition. A complex root finder routine based on
Muller's method has been used for the numenical evalu-
ation of the above secular equation. The Floquet ampli-
tudes for the field expansion in all the uniform regions can
subsequently be evaluated.

VII. NuMEericaL RESULTS

The charactenstic values of the propagation constant y
were computed for several boundary partitions to illus-
trate the convergence of the attenuation coefficient a. This
example, with frequent appearance in the literature, was

Gge -yA/2

H:F:SA4 - G:r: H:F:S.w
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first presented by Peng et al. [21]. Fig. 1 shows the basic
structure with the following parameters, A = N/2, (X is
the free-space wavelength), x; = 1, x; = 3, x, = 2.3, and
the waveguide thickness wy; = A /7. In this structure the
duty cycle is 50%. The wavelength A, = 2x /8 of the
fundamental Floquet-Bloch mode has an upper and lower
bound satisfied by A/+/3 < A, < A/+?2.3 so that the sec-
ond Bragg condition (A, = A) has not been reached. This
means that leaky wave radiation will occur in the back-
ward direction.

Before illustrating the computation of the charactenistic
values of the propagation constant the values of the Fou-
rier series pair r, and R; are shown for the values N, =
10, N, = 8, and the tooth height w, /X = 0.2. The number
of points taken around the boundaries of regions A and B
are identical. The tooth height-width ratio corresponds to
4/5 so that the present boundary element configuration
yields equal partition lengths along the horizontal and ver-
tical sides of the tooth. Fig. 3(a) shows the magnitude of
r, while Fig. 3(b) shows the magnitude of R,. The coef-
ficients r, decrease as 1/|n| for large n values. Although
exact values of r, depend on +y, changes of their respective
values in the vicinity of the second Bragg condition are
rather small. For the present condition. the major coeffi-
cients r, are forn = 0, —1, —2. These harmonics will
be dominant in the transform. clearly shown in Fig. 3(a).

Generally the discrete Fourier series pair are associated
with either a space harmonic quantity (integer n) or space

H:F:mu - G:P: H;:F:ﬁaﬂ
H{T o ®p, HiT{®Rps — GoT]

) (45)
H{T28p5 - fof]

position (integer /). The space harmonic ¢, and the *‘am-
plitude’” function ¢, are shown in Fig. 4 for the 5 x 4
configuration. Note that the **dc’” component n = 0 and
the n = —1 harmonic are dominant. Most of the harmonic
amplitudes are below two orders of magnitude below the
dominant term.

The computed value of v depends on the number of
boundary points. For the § X 4 partition with the above
geometry, aX = 1.9096 x 10™?and 8 /ky = 1.5795. (The
computed values given by Peng er al. [18] are aX =
1.8715 x 107 and 8/ky = 1.5809.) Increasing the par-
tition number by 4, to 20 x 16, gives aXx = 1.8713 X
107? and B/ky = 1.5806. Although the latter partition
gives results almost identical to that of Peng et al. at a
tooth height of w, /X = 0.2, the accuracy of the compu-
tations vary with tooth height.

Computation of the attenuation coefficient versus grat-
ing depth will now be considered. Each of the curves gen-
erated stant at a tooth height of 0.2. The attenuation coef-
fictent decreases monotonically as the grating depth tends
to zero. In the first example, illustrated in Fig. 5 as 5 X
1.N, = 5and N, = 1. The value of o tends to zero much
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TABLE [
THE EIGENVALUE CONVERGENCE IN TERMS OF
THE NUMBER OF BOUNDARY ELEMENTS

N, X N, ah X 10° B/ks
5x4 1.9096 1.5795
10 x 8 1.8767 1.5803
20 x 16 1.8713 1.5806
25 x 20 1.8710 1.5807
Peng et al. 1.8716 1.5808
w. /N = 0.20.

ATTENUATION i

T .
00 X 02

TOOTH HEIGHT

Fig. 5. The attenvation coeflicient o\ as a function of the grating depth
ws /X, The solid curve represents the data from [18]. The remaining curves
are computed using the boundary element method with the number of
boundary points denoted as N x N},

w?/l
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earlier than in the cases for the higher number of ele-
ments. As the number of elements is increased. in the next
two examples denoted as 25 X 5 and 25 x 20, the new
curves approach that calculated in [21], however, it is
noted that there are only slight differences in the two
cases. For tooth heights w; /X > 0.06 the solution of the
latter two examples appears to be relatively accurate.

All calculations as illustrated in the figure use H§ for
the Green's function. However, when Y, was used, the
calculated results showed pronounced degradation for the
attenuation coefficient. In particular, all curves with sim-
ilar boundary element numbers calculated using Y, for the
Green’s functions tend to zero more rapidly with decreas-
ing grating depth than that illustrated by the 5 X 1 curve.

VIII. ConcLUSION

The boundary integral formulation has been used to cal-
culate the Floquet-Bloch modes of two-dimensional pe-
riodic waveguides. In the formulation of the method a new
technique has been developed for matching the fields in-
side the grating to those outside the grating. Although the
four layer structure used to illustrate the method is rela-
tively simple, an extension to multilayer waveguide struc-
tures can be easily effected. In the event that gratings be-
come geometrically complicated, it will be necessary to
increase the number of boundary points along the unit cell.
The techniques developed here can be applied to more
complicated tooth forms, requiring some of the numerical
computations to be carried out efficiently. For example,
the ® and § matrices are computed using discrete Fourier
series. When the number of points N4 and N are large
efficient FFT algorithms can be used to speed the com-
putation of the matrix elements.

APPENDIX

The program ADAPT was written to evaluate the ma-
trix elements of G and JC. It estimates the value of inte-
grals of the form

b b |
I, = S f)de and I, = S log (;)f(.‘t) dx

forb > a = 0. For user specified values of ABSERR and
RELERR, ADAPT computes an estimate [; of /; whose
absolute error is bounded above by max {ABSERR, RE-
LERR* |[;| }. ADAPT obtains this estimate by creating a
partition {[a;, b;): i = 1, n} of the interval [a, b] with the
property the error in the estimates of the integrals over
la;, b;] are sufficiently small. The integrals over [a;, b;]
have one of the following two forms:

bi 1
S gx) dx = (b; — a;) So gla; + (b; — a)t) di
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or

bi 1
So log G) g2(x) dx = b; S log (1> g(b;t) dt + b;
1 1
* log (-—) S g ar
b,‘ 0

where b; > a; = 0. ADAPT uses a Gauss-Kronrod rule
with weight 1 to estimate the values of the integrals
' 1

! .
So gla; + (b; — a;)t) dr and So g(b;r) dt

and a Gauss-Kronrod rule with weight log (l/x) to esti-
mate the value of the integral

' 1
go log (;) g(b;n) dtr.
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Surface Emitting Characteristics of Silicon Waveguides*”

N. Urimindi,” C. S. Yeh,® Jin Liu® and J. K. Butler®
Abstract

The objective of the present paper is to demonstrate surface emitting characteristics of
silicon waveguides in the millimeter-wave frequency band. Waveguides used in the experiment
are rectangular slabs of high resistivity silicon ( 30,000 ohm.cm). A series of perturbations on
the silicon waveguide are required to provide a radiating surface. The second Bragg frequency is
fixed at 90 GHz from which the grating period, height and the duty cycle were calculated. A
rectangular grating with period A = 1.08 mm, height = 0.35 mm, and duty cycle = 0.46 was
etched on the surface of the silicon slab. The ends of the waveguide were tapered for efficient
coupling of power to and from the metallic waveguides. Experiments are performed to measure
the attenuation, dispersion and the radiation characteristics of the said waveguides. The test
setup was used to monitor the frequency, radiation angle, and the radiated power.
Measurements are made over a band of frequencies around the second Bragg frequency. We
have scanned the detector from 88-95 GHz and were able to observe the change in the
attenuation constant, dispersion relation and the far-field radiation pattern. The observed
experimental results are found to be in good agreement with their theoretical counterparts.
From these results we were able to verify the grating theory.
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The present waveguide was designed to operate at a second Bragg frequency of 90 GHz.
The source is an IMPATT diode oscillator with a frequency range of 88-85 GHz. In this
experiment the silicon waveguide is inserted between the two metallic waveguides. One of them
guides the modulated output power of the source to the silicon waveguide. The surface waves
propagating on the silicon waveguide is coupled to the other metallic waveguide the output of
which couples to the detector. Variable attenuators are placed at appropriate places to control
the of power. A series of rectangular periodic grating is etched on the waveguide surface in order

* The authors are with the Department of Electrical Engineering, Southern Methodist
University, Dallas, TX 75275.
** Supported in part by the Army Research Office.
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to study the radiation pattern. A second detector is placed at the broad side of the silicon
waveguide to measure the radiation pattern. The output of the detector is monitored with the
help of personal computer, which displays the radiatjon pattern, frequency and the angle of
radiation.

Results

The variation of attenuation constant with frequency is shown in Figure la. Figure 1b
shows the dispersion characteristics of the waveguide. The theoretical results are also included
in the same figure for comparison. Figure 2 shows the radiation pattern emitted by the silicon
waveguide at different frequencies. It is observed that the radiation angle of the beam can be
controlled by the source frequency.

Conclusion

We have measured the attenuation constant, the dispersion relation and the far-field
radiation pattern of a silicon waveguide with rectangular grating. The results shown were in
close agreement with the theory. From the radiation pattern, we can build an electronically
stecrable antenna which can operate at millimeter wavelengths. Since the waveguide is made of
silicon, it is possible to integrate the whole system on a single chip.
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Experimental Analysis of Metal Coated Dielectric Waveguides®®

C. S. Yeh,” N. Urimindi® Jin Liu,” and J. K. Butler®

Abstract

In this paper we have investigated the experimental characteristics of metal coated

dielectric waveguides with a rectangular
operate at a second Bragg frequency of 9

surface corrugation. The waveguide is designed to
0 GHz. The period, height and the duty cycle of the

rectangular grating were calculated from the chosen frequency. A metallic layer of aluminum is

sputtered on one side of the slab wavegui

de. The purpose of the metallic layer is to simulate a

layer of high density plasma on the surface of the waveguide instead of using an optical source.
Experiments are performed to examine the far field radiation pattern, attenuation constant and
the dispersion relation. Due to the presence of the plasma layer there will be an anguler shift in

the far field radiation pattern. We have
pattern of the waveguide before and after

observed a phaseshift of about 20° in the radiation
coating the metallic layer. Measurements are made in

the frequency range of 88-95 GHz. This waveguide structure can be used to de sign an
electronically steerable antenna and an electronic phaseshifter operating in the millimeter-wave

frequency band. The experimental results
have verified the grating theory experimen

are in good agreement with the theory. This way we
tally.
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Experimental Set-Up

The waveguide was fabricated from a wide slab of alumina whose dielectric constant
€ = 0.6. A rectangular periodic grating is etched on the surface of the waveguide so as to

observe the radiation pattern. The teeth

height, duty cycle and the period of the grating was

chosen such that the waveguide operates at a second Bragg frequency of 90 GHz. An Aluminum
layer of 1 um thickness was sputtered on the flatside of the waveguide to simulate a plasma

layer. For excitation the waveguide was

inserted between the two metallic waveguides; One

guides the modulated output power of the source to the dielectric waveguide. The surface waves

propagating on the dielectric waveguide

were coupled to the other metallic waveguide whose

* The authors are with the Department of Electrical Engineering, Southern methodist

University, Dallas, TX 75275.

** Sypported in part by the Army Research Office.




9.

output was monitored by a detector. A second detector was placed at the broad side of the
dielectric waveguide to measure the radiation pattern. The output of both the detectors were
monitored with the help of a computer, which displays the radiation pattern, the frequency and

the angle of radiation.

Results

The variation of attenuation and the dispersion characteristics with frequency are shown in
Figure 1a and 1b respectively. Theoretically computed values of the attenuation constant and
the dispersion relation are also included in the same figure for comparison. Figure 2 shows the
radiation pattern of the waveguide before and after sputtering at different frequencies. We have
noticed an angular shift of about 20° in the radiation pattern of the waveguide with and

without the metallic layer.

Conclusion

High density plasma was simulated by depositing an Aluminum laver on the flat-side of
the waveguide. The angular shift in the radiation pattern before and after coating the metallic
laver was measured. Typical value of the angular shift observed was 20° which is significant
enough to build an electronic phase shifter to be operated at millimeterwave frequencies. The
dispersion relation and the attenuation constant were also measured in the frequency range of

present interest.
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DESIGN AND PERFORMANCE OF CORRUGATED WAVEGUIDES BASED ON SLAB
WAVEGUIDE PRINCIPLES *
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Department of Electrical Engineering, Southern Methodist University, Dallas, TX 75275.

G.A. Evans, P. Stabile, A. Rosen
David Samoff Research Center, Princeton, NJ 08543 - 5300.

ABSTRACT

A simple design is developed for corrugated waveguides for operation in the millimeterwave range of
frequencies. The method determines both the corrugation period and the depth. The design is based on slab
waveguide principles and uses solutions of the (scalar) boundary value problem of the slab waveguide to
determine the corrugation depth and the corrugation spacing. The design technique compares well with other
techniques developed for the purpose. Reflections at 90° at certain specific wavelengths are measured in the far
field to obtain the radiation patterns. The patterns show good agreement with theoretical pedictions confirming
the effectiveness of design principles used. Measurements range in the frequencies from 90 GHz to 100 GHz.

1. INTRODUCTION

Corrugated waveguide structures have been widely used either as passive optical elements or as components
of lasers. More recently, corrugations have been used in high power DBR surface-emitting diode lasers and
laser arrays. Applications include leaky wave antennas and use as surface emitting structures [1], [2]. In most of
the applications, the corrugated waveguides are periodic. The two unknown parameters in a corrugated
waveguide are the spatial variation of the corrugation period and its depth measured along the guide. At any
wavelength, significant coupling between two contradirectional waveguide modes takes place only at the
corrugation period where the Bragg condition is satisfied.

The dielectric corrugated waveguide has four geometrical parameters by which it can be characterized: the
height of the uniform waveguide, the thickness of the corrugation region T, the period of corrugations A, and
the aspect ratio of the periodicity. The period of corrugation is the most important design parameter. The
choice of A determines whether single or multiple beam radiation is obtained and has a determining influence on
the radiation angle ¢, and on the propagation constant.

The periodicity produces an infinity of space harmonics associated with the leaky mode; the phase constants B,
of the various space harmonics are related to the phase constant f§ of the basic wave. The propagation constant and
the leakage constant of this category of antenna structures is found by solution of the (scalar) boundary value
problem for infinite width. The latter is a measure of the power leaking per unit length along the length of the
dielectric structure.

2. THEORETICAL BACKGROUND

The waveguide antenna structure consists of two parts: one is the uniform waveguide (unperturbed
structure) and the other is the periodic layer. The width of the structure is "W’, the period of the corrugations is
'A’ and the height of the corrugated teeth is ‘T*. As an exact electromagnetic boundary value problem, periodic
dielectric waveguides bave been treated for normal incidence (with respect to the direction of the grating
grooves and with the assumptions that both the antenna structure and the source distribution do not depend on
the coordinate parallel to the grooves (y-axis). Under these simplifying conditions, a general electromagnetic
wave propagating in periodic waveguide can be decomposed into independent TE and TM modes. The studies
carried out in this case pertain mainly to the TM mode propagation in the waveguides.
The waves supported by periodic corrugated dielectric structures behaving like antennas radiate as they travel
along the antenna. The lowest leaky mode is of interest. The leaky wave mode has a phase constant B and an

attenuation leakage copstant a. The phase constant of the p'b harmonic is related to that of the basic wave by

2nn
Bn = B + —A— (1)

° Supported in part by the Army Research Office
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where n is the order of the given space harmonic and n=0 corresponds to the basic wave. If a space harmonic is
slow along the dielectric interface, it is purely bound; if it is fast, it will radiate power away at an angle given
by

¢ = sin’! (= + —) @)

where A is the free space wavelength, k, = 2n/A, is the free space wave number and ¢, is the radiation angle
measured from the positive x-axis.

2.1. Design of Corrugated Waveguides

The design of a corrugated waveguide is based on the physics of a four layer waveguide [3], [4]). The
algorithm for the design is based on TM mode propagation in the active layer of the device. The solution of the
wave equation from the Maxwell's equation is sought in each of the four regions. The solution of the four layer
problem in terms of estimating the propagation constant of the propagating wave, depends on the solution of
the secular equation.
2.1.1. Design Procedures

The propagation constant P is obtained as a solution of the secular equation obtained as a boundary value
problem in the four layer waveguiding structure. The wavelength of the wave in thz guide is obtained as

Ao

Knowing B, A, can be ca]culated The grating spacing A is of the order of the value of A,. If the corrugation
spacing is mase equal to A,, the radiation will be normal to the waveguide at the design frequency. of the
waveguide. If A is slightly :fxfferent from lg. the frequency at which ¢ = 0 will be slightly different from the
frequency designed to be zero.

Using the procedures outlined above, a waveguide structure is designed on which corrugations are created
in active layer of the structure. The corrugated waveguide is made of alumina of thickness 40 mils and dielectric
constant of 9.6. The design is carried out for a frequencies of operation in the millimeterwave range. The
dielectric constant in the region 3 of interest is dependent on that in regions 2 & 4 which in turn depends on
the duty cycle of the corrugations. The dielectric constant X3, in the active region is

X3 = Do xxg + (1-Dg)xy “
where D is the duty cycle of the periodicity. This value in region 3 is the average value of the dielectric
constants in the corrugated region. The periodicity of the waveguide, dependent on the frequency of operation
is related to the duty cycle and the width of the corrugations by

w = T]Dc X Ag )

where A is free space wavelength under consideration.

The corrugations are created using a diamond blade, the blade thickness T, being related to the periodicity

A by
T =A[1-D] (6)

Computations are made to find the different heights in the corrugations for the different blade thickness at
different duty cycles of the corrugations. The blade thickness being & constant in this case, the approriate tooth
height of necessity is chosen.

2.1.2. Example

An example of the design procedure followed in one of the constructed waveguides is given for a
waveguide designed to operate at 85 GHz. The main criterion was to find the height of the corrugations and the
grating period A given the blade thickness T. Assuming a value of 0.55 mm for T, computations are made for a
number of different tooth heights corresponding to different blade thicknesses for different duty cycles. These
values are shown in figure 3. If we desire a weak grating of tooth height 0.2 mm, from figure 3, the duty cycle
of the corrugations is 0.6. Corresponding to a duty cycle of 0.6, the grating period works out to a value of
1.375 mm. Hence the design specifications for an alumina waveguide of thickness 40 mils and dielectric
constant of 9.6, for propagating TM modes are that for a tooth height be 0.2 mm and blade width 0.55 mm, the
grating period is 1.375 mm. The performance of the waveguide was in close agreement to theoretical
pred:ciions.

2.3. Measurement of Radiation Pattern

The main direction of the radiation from the dielectric grating structure is found from equation (2). The
experimental set-up used to measure the radiation pattern of the waveguides considered hitherto is shown in figure 2.
The various components in the set up include a frequency tunable IMPATT diode oscillator (S1), a ferrite modulator
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(M1), s precision frequency meter (FM1), vanable attenuators (A1,A2), 3-dB coupler (DC1), rotary phase shifter
(PH1), manual waveguide switches (SW1, SW2), matched terminations (T1,T2,T3,T4), flat broadband detector with
horn antenna set up in z-polarnization (D1) and the corrugated waveguide under observation.

Electromagnetic wave propagating in each of the four regions can be written as superposition af space harmonics
generated from the periodic grating. For TM modes:

Hy(x,z) = ZHg)exp (ikzp2) Q)

where Hg) is the magnetic field amplitude of the n'h space harmonic in the subregion j(=1,2,3,4) and k,, is
the z-component of the complex wavenumber.

The antenna dimensions is chosen such that only the n = -1 space harmonic radiates. Hence for the calculation of
the radiation pattern, the field pattern in the plane x=t can be approximated by the contnibution of the n= -1 harmonic
alone.

The field described above is one of the two self consistent solutions for the slab waveguide. The first of the
solutions is the TM modes consisting of the components Ey,Hy,and E; The TM modes of the slab dielectric
waveguide match the TEq; in the metallic waveguide best. Just one mode being supported by the mettalic waveguide
is due to the small dimensions of the mettalic waveguide(1.25mm x 2.50mm). The cut off frequency of this TE;
dominant mode is 60 GHz while the next mode TE is cut off at 120 GHz. In the experiment, the source oscillator is
operated in the frequency range 90 GHz to 100 GHz. As seen from the above equations the metallic waveguide can
only support the TE(; mode.

3. RESULTS AND CONCLUSIONS

Corrugated waveguides were designed at millimeter wave frequencies. Experiments indicated that in the
average case, ratio of beam spread to the corresponding shift in frequency was in the range of about 1.99/GHz.
The key parameters like tooth height and corrugation spacing were varied theoretically and experimentally to
determine their effect. Results show that the radiation angle is sensitive to changes in corrugation spacing. This
can be used to give and indication as to how the waveguide should be designed to cover a desired range of
angular scan.

Figures 1 and 2 show the basic waveguide structure, the geometry and the experimental set up for
experimentation of the waveguides. Figures 3 and 4 outline the design procedure for an example considered at
85 GHz. Figure 5 and figure 6 show experimental results of radiation patterns for single and double section
waveguides. Accurate results were difficult to obtain in waveguides with two sections as it appeared that
reflected and scattered radiation from one had an effect on the radiation on the second section. Some theoretical
studies were made to study the radiation patterns from a waveguide designed at a specific frequency but having
varying attenuation constants. If P is the incident power into the waveguide and P, is the power along the
waveguide at some point 'z’ along the waveguide, then P = Pye"®Z. From this equation, radiation patterns can
be computed for different values of the attenuation constant. Figure 7 shows such a theoretical study carried out
3t 90 GHz. A number of techniques have been recently studied to design waveguides of the kind considered here
{6]. The technique adopted in this paper proves to be a simple and effective technique for the purpose. The
results show that the observed radiation patterns fall reasonably well within theoretical limits.
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Fig:5 Far field radiation pattern from a
waveguide with tooth height 0.3 mm q

and grating period 1.325 mm.
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-Fig: 6 Radiation pattern in the far field from
s waveguide with two sections of cor-
rugations each designed for 90 GHz.

Fig:7 Simulated results of radiation pattern
from s waveguide designed for oper-
ation at 90 GHz. Calculations are made
for different attenuation constants.




